論文の概要: Learning-Based Framework for Camera Calibration with Distortion
Correction and High Precision Feature Detection
- arxiv url: http://arxiv.org/abs/2202.00158v1
- Date: Tue, 1 Feb 2022 00:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-02 14:44:12.741040
- Title: Learning-Based Framework for Camera Calibration with Distortion
Correction and High Precision Feature Detection
- Title(参考訳): 歪み補正と高精度特徴検出を用いた学習型カメラ校正フレームワーク
- Authors: Yesheng Zhang, Xu Zhao and Dahong Qian
- Abstract要約: 本稿では,これらのボトルネックに対処する従来の手法と学習に基づくアプローチを組み合わせたハイブリッドカメラキャリブレーションフレームワークを提案する。
特に、このフレームワークは学習に基づくアプローチを利用して、効率的な歪み補正とロバストなチェス盤角座標符号化を行う。
広範に使われている2つのカメラキャリブレーションツールボックスと比較して、実データと合成データの両方の実験結果は、提案フレームワークのより良い堅牢性と高い精度を示す。
- 参考スコア(独自算出の注目度): 14.297068346634351
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Camera calibration is a crucial technique which significantly influences the
performance of many robotic systems. Robustness and high precision have always
been the pursuit of diverse calibration methods. State-of-the-art calibration
techniques based on classical Zhang's method, however, still suffer from
environmental noise, radial lens distortion and sub-optimal parameter
estimation. Therefore, in this paper, we propose a hybrid camera calibration
framework which combines learning-based approaches with traditional methods to
handle these bottlenecks. In particular, this framework leverages
learning-based approaches to perform efficient distortion correction and robust
chessboard corner coordinate encoding. For sub-pixel accuracy of corner
detection, a specially-designed coordinate decoding algorithm with embed
outlier rejection mechanism is proposed. To avoid sub-optimal estimation
results, we improve the traditional parameter estimation by RANSAC algorithm
and achieve stable results. Compared with two widely-used camera calibration
toolboxes, experiment results on both real and synthetic datasets manifest the
better robustness and higher precision of the proposed framework. The massive
synthetic dataset is the basis of our framework's decent performance and will
be publicly available along with the code at
https://github.com/Easonyesheng/CCS.
- Abstract(参考訳): カメラキャリブレーションは多くのロボットシステムの性能に大きな影響を及ぼす重要な技術である。
堅牢性と高精度は、常に多様な校正方法の追求である。
しかし、Zhangの手法に基づく最先端のキャリブレーション技術は、環境ノイズ、ラジアルレンズ歪み、準最適パラメータ推定に悩まされている。
そこで本稿では,学習に基づくアプローチと,これらのボトルネックに対処する従来の手法を組み合わせたハイブリッドカメラキャリブレーションフレームワークを提案する。
特にこのフレームワークは、効率的な歪み補正とロバストなチェスボードコーナー座標符号化を行うために学習に基づくアプローチを利用する。
コーナー検出のサブピクセル精度向上のために,組込み外乱除去機構を備えた特別設計座標復号アルゴリズムを提案する。
提案手法は, RANSACアルゴリズムによる従来のパラメータ推定を改良し, 安定した結果を得る。
広範に使われている2つのカメラキャリブレーションツールボックスと比較して、実データと合成データの両方の実験結果は、提案フレームワークのより良い堅牢性と高い精度を示す。
大規模な合成データセットは、当社のフレームワークの十分なパフォーマンスの基礎であり、https://github.com/Easonyesheng/CCS.comのコードとともに公開されます。
関連論文リスト
- Toward Efficient Visual Gyroscopes: Spherical Moments, Harmonics Filtering, and Masking Techniques for Spherical Camera Applications [83.8743080143778]
視覚ジャイロスコープは、画像を通してカメラの回転を推定する。
従来のRGBカメラに比べて視野が広い全方位カメラの統合は、より正確で堅牢な結果をもたらすことが証明されている。
本稿では,効率的なマルチマスク・フィルタ回転エステータと学習に基づく最適化を組み合わせた,新しい視覚ジャイロスコープを導入することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2024-04-02T13:19:06Z) - Single-image camera calibration with model-free distortion correction [0.0]
本稿では,センサ全体をカバーする平面スペックルパターンの単一画像から,キャリブレーションパラメータの完全な集合を推定する方法を提案する。
デジタル画像相関を用いて校正対象の画像点と物理点との対応を求める。
プロシージャの最後には、画像全体にわたって、密度が高く均一なモデルフリーな歪みマップが得られる。
論文 参考訳(メタデータ) (2024-03-02T16:51:35Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
本研究では,3次元空間における閉塞関係を用いた2次元3次元エッジポイント抽出に基づく新たなターゲットレスキャリブレーション手法を提案する。
本手法は,高画質カメラ-LiDARキャリブレーションによる実用的応用に寄与する,低誤差かつ高ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-11-04T14:32:55Z) - EdgeCalib: Multi-Frame Weighted Edge Features for Automatic Targetless
LiDAR-Camera Calibration [15.057994140880373]
実世界のシナリオにおけるLiDARとカメラの自動校正のためのエッジベースのアプローチを提案する。
エッジ機能は、様々な環境で広く使われているが、画像と点雲の両方に並び、外在パラメータを決定する。
その結果, 最先端回転精度は0.086deg, 翻訳精度は0.977cmであり, 既存のエッジベースキャリブレーション法よりも精度とロバスト性が高いことがわかった。
論文 参考訳(メタデータ) (2023-10-25T13:27:56Z) - RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model [3.580983453285039]
複数の干渉下で入力に対して高いサブピクセル精度を維持することができる新しい検出アルゴリズムを提案する。
アルゴリズム全体は粗い戦略を採用しており、Xコーン検出ネットワークと3つの後処理技術を含んでいる。
実画像および合成画像の評価は,提案アルゴリズムが他の一般的な手法よりも検出率,サブピクセル精度,ロバスト性が高いことを示す。
論文 参考訳(メタデータ) (2023-07-07T10:40:41Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - An Adaptive Method for Camera Attribution under Complex Radial
Distortion Corrections [77.34726150561087]
インカメラまたはインカメラソフトウェア/アサートウェアは、PRNUベースのカメラ属性を妨げるために、画像の支持グリッドを変更する。
この問題に対処する既存のソリューションは、計算負荷を抑制するために、数変数でパラメータ化された半径変換を用いて補正を反転/推定しようとする。
本稿では,Adobe Lightroom, Photoshop, Gimp, PT-Lensといったサードパーティ製ソフトウェアが適用したような高度な補正を,同心円に分割することで実現する適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-28T08:44:00Z) - TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive
SubPixel Refinement of AprilTags [23.568127229446965]
現在の最先端技術による広角レンズの校正は、エッジの極端に歪みがあるため、結果を得られない。
精度の高い広角キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-10-05T18:57:07Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。