論文の概要: RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model
- arxiv url: http://arxiv.org/abs/2307.03505v1
- Date: Fri, 7 Jul 2023 10:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 12:49:38.208943
- Title: RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model
- Title(参考訳): RCDN --アドバンストCNNモデルに基づくロバストX-Corner検出アルゴリズム
- Authors: Ben Chen, Caihua Xiong, Quanlin Li, Zhonghua Wan
- Abstract要約: 複数の干渉下で入力に対して高いサブピクセル精度を維持することができる新しい検出アルゴリズムを提案する。
アルゴリズム全体は粗い戦略を採用しており、Xコーン検出ネットワークと3つの後処理技術を含んでいる。
実画像および合成画像の評価は,提案アルゴリズムが他の一般的な手法よりも検出率,サブピクセル精度,ロバスト性が高いことを示す。
- 参考スコア(独自算出の注目度): 3.580983453285039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection and localization of X-corner on both planar and non-planar
patterns is a core step in robotics and machine vision. However, previous works
could not make a good balance between accuracy and robustness, which are both
crucial criteria to evaluate the detectors performance. To address this
problem, in this paper we present a novel detection algorithm which can
maintain high sub-pixel precision on inputs under multiple interference, such
as lens distortion, extreme poses and noise. The whole algorithm, adopting a
coarse-to-fine strategy, contains a X-corner detection network and three
post-processing techniques to distinguish the correct corner candidates, as
well as a mixed sub-pixel refinement technique and an improved region growth
strategy to recover the checkerboard pattern partially visible or occluded
automatically. Evaluations on real and synthetic images indicate that the
presented algorithm has the higher detection rate, sub-pixel accuracy and
robustness than other commonly used methods. Finally, experiments of camera
calibration and pose estimation verify it can also get smaller re-projection
error in quantitative comparisons to the state-of-the-art.
- Abstract(参考訳): 平面パターンと非平面パターンの両方におけるx-cornerの正確な検出と局在は、ロボティクスとマシンビジョンのコアステップである。
しかし、従来の研究は精度と頑健さのバランスが取れず、どちらも検出器の性能を評価するための重要な基準であった。
そこで本研究では,レンズ歪み,極端なポーズ,ノイズなどの複数干渉による入力に対して,高いサブピクセル精度を維持できる新しい検出アルゴリズムを提案する。
粗細戦略を採用するアルゴリズム全体は、x-corner検出ネットワークと、正しいコーナー候補を識別するための3つの後処理技術と、混合サブピクセルリファインメント技術と、チェッカーボードパターンを部分的に可視または遮蔽するように改良された領域成長戦略を含む。
実画像および合成画像の評価は,提案アルゴリズムが他の一般的な手法よりも検出率,サブピクセル精度,ロバスト性が高いことを示す。
最後に、カメラのキャリブレーションとポーズ推定の実験により、最先端と定量的比較において、より小さな再投影誤差を検証できる。
関連論文リスト
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - Match and Locate: low-frequency monocular odometry based on deep feature
matching [0.65268245109828]
本稿では,1台のカメラしか必要としないロボットオドメトリーの新たなアプローチを提案する。
アプローチは、深い特徴マッチングモデルを用いて、ビデオストリームの連続フレーム間の画像特徴のマッチングに基づいている。
本研究では,AISG-SLAビジュアルローカライゼーションチャレンジにおける手法の性能評価を行い,計算効率が高く,実装が容易であるにもかかわらず,競合する結果が得られた。
論文 参考訳(メタデータ) (2023-11-16T17:32:58Z) - CCDN: Checkerboard Corner Detection Network for Robust Camera
Calibration [10.614480156920935]
チェッカーボードコーナー検出ネットワークといくつかの後処理技術。
ネットワークモデルは、損失関数と学習率を改善した完全な畳み込みネットワークである。
偽陽性を除去するために,最大応答,非最大抑制,クラスタリングに関連するしきい値を含む3つの後処理手法を用いる。
論文 参考訳(メタデータ) (2023-02-10T07:47:44Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Learning-Based Framework for Camera Calibration with Distortion
Correction and High Precision Feature Detection [14.297068346634351]
本稿では,これらのボトルネックに対処する従来の手法と学習に基づくアプローチを組み合わせたハイブリッドカメラキャリブレーションフレームワークを提案する。
特に、このフレームワークは学習に基づくアプローチを利用して、効率的な歪み補正とロバストなチェス盤角座標符号化を行う。
広範に使われている2つのカメラキャリブレーションツールボックスと比較して、実データと合成データの両方の実験結果は、提案フレームワークのより良い堅牢性と高い精度を示す。
論文 参考訳(メタデータ) (2022-02-01T00:19:18Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
現在の物体検出器は、高い精度と高速な推論速度のバランスを取るのが難しい。
ロボットつかみポーズ推定を行うための効率的かつ堅牢な完全畳み込みニューラルネットワークモデルを提案する。
ネットワークは、他の優れたアルゴリズムよりも桁違いに小さい順序です。
論文 参考訳(メタデータ) (2021-01-25T16:36:53Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Efficient detection of adversarial images [2.6249027950824506]
画像の画素値は外部攻撃者によって修正されるため、人間の目にはほとんど見えない。
本稿では,修正画像の検出を容易にする新しい前処理手法を提案する。
このアルゴリズムの適応バージョンでは、ランダムな数の摂動が適応的に選択される。
論文 参考訳(メタデータ) (2020-07-09T05:35:49Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
文脈情報は人体構成や見えないキーポイントを推論する上で重要な役割を担っている。
そこで我々は,空間とチャネルのコンテキスト情報を効率的に統合するカスケードコンテキストミキサー(CCM)を提案する。
CCMの表現能力を最大化するために、我々は、強陰性な人検出マイニング戦略と共同訓練戦略を開発する。
検出精度を向上させるために,キーポイント予測を後処理するためのいくつかのサブピクセル改良手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T02:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。