Exploring layerwise decision making in DNNs
- URL: http://arxiv.org/abs/2202.00345v1
- Date: Tue, 1 Feb 2022 11:38:59 GMT
- Title: Exploring layerwise decision making in DNNs
- Authors: Coenraad Mouton and Marelie H. Davel
- Abstract summary: We show that by encoding the discrete sample activation values of nodes as a binary representation, we are able to extract a decision tree.
We then combine these decision trees with existing feature attribution techniques in order to produce an interpretation of each layer of a model.
- Score: 1.766593834306011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep neural networks (DNNs) have become a standard architecture for
many machine learning tasks, their internal decision-making process and general
interpretability is still poorly understood. Conversely, common decision trees
are easily interpretable and theoretically well understood. We show that by
encoding the discrete sample activation values of nodes as a binary
representation, we are able to extract a decision tree explaining the
classification procedure of each layer in a ReLU-activated multilayer
perceptron (MLP). We then combine these decision trees with existing feature
attribution techniques in order to produce an interpretation of each layer of a
model. Finally, we provide an analysis of the generated interpretations, the
behaviour of the binary encodings and how these relate to sample groupings
created during the training process of the neural network.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics [11.44947569206928]
Deep neural networks (DNNs) maximize information extraction by rationally allocating the proportion of neurons in different modes across deep layers.
This framework provides a unified explanation for fundamental DNN behaviors such as the "flat minima effect," "grokking," and double descent phenomena.
arXiv Detail & Related papers (2025-01-05T04:23:21Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - WLD-Reg: A Data-dependent Within-layer Diversity Regularizer [98.78384185493624]
Neural networks are composed of multiple layers arranged in a hierarchical structure jointly trained with a gradient-based optimization.
We propose to complement this traditional 'between-layer' feedback with additional 'within-layer' feedback to encourage the diversity of the activations within the same layer.
We present an extensive empirical study confirming that the proposed approach enhances the performance of several state-of-the-art neural network models in multiple tasks.
arXiv Detail & Related papers (2023-01-03T20:57:22Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Finding Representative Interpretations on Convolutional Neural Networks [43.25913447473829]
We develop a novel unsupervised approach to produce a highly representative interpretation for a large number of similar images.
We formulate the problem of finding representative interpretations as a co-clustering problem, and convert it into a submodular cost submodular cover problem.
Our experiments demonstrate the excellent performance of our method.
arXiv Detail & Related papers (2021-08-13T20:17:30Z) - Interpreting Deep Learning Model Using Rule-based Method [36.01435823818395]
We propose a multi-level decision framework to provide comprehensive interpretation for the deep neural network model.
By fitting decision trees for each neuron and aggregate them together, a multi-level decision structure (MLD) is constructed at first.
Experiments on the MNIST and National Free Pre-Pregnancy Check-up dataset are carried out to demonstrate the effectiveness and interpretability of MLD framework.
arXiv Detail & Related papers (2020-10-15T15:30:00Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.