論文の概要: Closing the sim-to-real gap in guided wave damage detection with
adversarial training of variational auto-encoders
- arxiv url: http://arxiv.org/abs/2202.00570v1
- Date: Wed, 26 Jan 2022 17:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-06 09:21:49.894665
- Title: Closing the sim-to-real gap in guided wave damage detection with
adversarial training of variational auto-encoders
- Title(参考訳): 可変オートエンコーダの対向訓練による誘導波損傷検出におけるsim-to-realギャップの閉鎖
- Authors: Ishan D. Khurjekar, Joel B. Harley
- Abstract要約: 我々は、信号処理技術が一般的に用いられる損傷検出の第一課題に焦点をあてる。
我々は、波動物理誘導逆数成分を用いたシミュレーションデータのみに基づいて、変分オートエンコーダのアンサンブルを訓練する。
提案手法を既存のディープラーニング検出手法と比較し,実験データ上での優れた性能を観察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guided wave testing is a popular approach for monitoring the structural
integrity of infrastructures. We focus on the primary task of damage detection,
where signal processing techniques are commonly employed. The detection
performance is affected by a mismatch between the wave propagation model and
experimental wave data. External variations, such as temperature, which are
difficult to model, also affect the performance. While deep learning models can
be an alternative detection method, there is often a lack of real-world
training datasets. In this work, we counter this challenge by training an
ensemble of variational autoencoders only on simulation data with a wave
physics-guided adversarial component. We set up an experiment with non-uniform
temperature variations to test the robustness of the methods. We compare our
scheme with existing deep learning detection schemes and observe superior
performance on experimental data.
- Abstract(参考訳): ガイドウェーブテストは、インフラストラクチャの構造的完全性を監視するための一般的なアプローチである。
我々は,信号処理技術が一般的に用いられる損傷検出の第一課題に注目する。
検出性能は、波動伝搬モデルと実験波データとのミスマッチによって影響を受ける。
モデル化が難しい温度などの外部の変動も性能に影響する。
ディープラーニングモデルは代替の検出方法として考えられるが、現実のトレーニングデータセットが欠如していることが多い。
本研究では,波動物理誘導逆成分を用いたシミュレーションデータのみを用いて,変分オートエンコーダのアンサンブルを訓練することにより,この問題に対処する。
提案手法のロバスト性をテストするために,不均一な温度変動実験を行った。
本手法を既存のディープラーニング検出方式と比較し,実験データで優れた性能を観測する。
関連論文リスト
- A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Autoencoder-based Anomaly Detection in Streaming Data with Incremental
Learning and Concept Drift Adaptation [10.41066461952124]
ドリフト検出(strAEm++DD)を用いた自動エンコーダに基づく漸進学習手法を提案する。
提案手法は,逐次学習とドリフト検出の両方の利点を利用する。
我々は,重度あるいは極度のクラス不均衡を持つ実世界のデータセットと合成データセットを用いて実験を行い,StraAEm++DDの実証分析を行った。
論文 参考訳(メタデータ) (2023-05-15T19:40:04Z) - Generating artificial digital image correlation data using
physics-guided adversarial networks [2.07180164747172]
デジタル画像相関 (DIC) は, き裂標本の機械的実験を監視し評価するための貴重なツールとなっている。
実補間DIC変位に類似したクラック試験片の大量の人工変位データを直接生成する手法を提案する。
論文 参考訳(メタデータ) (2023-03-28T12:52:40Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - Fast kernel methods for Data Quality Monitoring as a goodness-of-fit
test [10.882743697472755]
本稿では,粒子検出器をリアルタイムで監視するための機械学習手法を提案する。
目標は、入ってくる実験データと参照データセットとの互換性を評価し、通常の状況下でのデータ挙動を特徴づけることである。
このモデルはカーネルメソッドの現代的な実装に基づいており、十分なデータを与えられた連続関数を学習できる非パラメトリックアルゴリズムである。
論文 参考訳(メタデータ) (2023-03-09T16:59:35Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
本研究では,キーストローク生体データ合成のためのデータ駆動学習モデルを提案する。
提案手法は,ユニバーサルモデルとユーザ依存モデルに基づく2つの統計的手法と比較する。
実験フレームワークでは16万件の被験者から1億3600万件のキーストロークイベントのデータセットについて検討している。
論文 参考訳(メタデータ) (2022-07-27T09:26:15Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Data-driven detector signal characterization with constrained bottleneck
autoencoders [0.0]
制約付きボトルネックオートエンコーダという形でのディープラーニングは、データから直接、基盤となる未知の検出器応答モデルを学ぶために使用することができる。
トレーニングされたアルゴリズムは、モデルの物理パラメータを推定し、高い忠実度で検出器応答をシミュレートし、検出器信号をデノネーズするために同時に使用することができる。
論文 参考訳(メタデータ) (2022-03-09T09:46:10Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2021-01-14T16:38:21Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。