Tutorial on amortized optimization
- URL: http://arxiv.org/abs/2202.00665v3
- Date: Mon, 24 Apr 2023 05:25:06 GMT
- Title: Tutorial on amortized optimization
- Authors: Brandon Amos
- Abstract summary: This tutorial presents an introduction to the amortized optimization foundations behind these advancements.
It overviews their applications in variational inference, sparse coding, gradient-based meta-learning, control, reinforcement learning, convex optimization, optimal transport, and deep equilibrium networks.
- Score: 13.60842910539914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization is a ubiquitous modeling tool and is often deployed in settings
which repeatedly solve similar instances of the same problem. Amortized
optimization methods use learning to predict the solutions to problems in these
settings, exploiting the shared structure between similar problem instances.
These methods have been crucial in variational inference and reinforcement
learning and are capable of solving optimization problems many orders of
magnitudes times faster than traditional optimization methods that do not use
amortization. This tutorial presents an introduction to the amortized
optimization foundations behind these advancements and overviews their
applications in variational inference, sparse coding, gradient-based
meta-learning, control, reinforcement learning, convex optimization, optimal
transport, and deep equilibrium networks. The source code for this tutorial is
available at
https://github.com/facebookresearch/amortized-optimization-tutorial.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Learning to optimize: A tutorial for continuous and mixed-integer optimization [41.29549467082292]
Learning to Optimize (L2O) stands at the intersection of traditional optimization and machine learning.
This tutorial dives deep into L2O techniques, introducing how to accelerate optimization algorithms, promptly estimate the solutions, or even reshape the optimization problem itself.
arXiv Detail & Related papers (2024-05-24T06:21:01Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Learning to Optimize Under Constraints with Unsupervised Deep Neural
Networks [0.0]
We propose a machine learning (ML) method to learn how to solve a generic constrained continuous optimization problem.
In this paper, we propose an unsupervised deep learning (DL) solution for solving constrained optimization problems in real-time.
arXiv Detail & Related papers (2021-01-04T02:58:37Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.