Federated Learning Challenges and Opportunities: An Outlook
- URL: http://arxiv.org/abs/2202.00807v1
- Date: Tue, 1 Feb 2022 23:32:21 GMT
- Title: Federated Learning Challenges and Opportunities: An Outlook
- Authors: Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr,
Tao Zhang
- Abstract summary: Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices.
This paper provides an outlook on FL development, categorized into five emerging directions of FL.
- Score: 31.774995877770333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has been developed as a promising framework to
leverage the resources of edge devices, enhance customers' privacy, comply with
regulations, and reduce development costs. Although many methods and
applications have been developed for FL, several critical challenges for
practical FL systems remain unaddressed. This paper provides an outlook on FL
development, categorized into five emerging directions of FL, namely algorithm
foundation, personalization, hardware and security constraints, lifelong
learning, and nonstandard data. Our unique perspectives are backed by practical
observations from large-scale federated systems for edge devices.
Related papers
- Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data.
Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL.
We propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions.
arXiv Detail & Related papers (2024-10-11T15:10:38Z) - Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated learning (FL) is a distributed machine learning paradigm enabling collaborative model training while preserving data privacy.
We present the recent advances in developing APPFL, a framework and benchmarking suite for federated learning.
We demonstrate the capabilities of APPFL through extensive experiments evaluating various aspects of FL, including communication efficiency, privacy preservation, computational performance, and resource utilization.
arXiv Detail & Related papers (2024-09-17T22:20:26Z) - FLEX: FLEXible Federated Learning Framework [6.112199274064954]
This paper introduces FLEX: a FLEXible Federated Learning Framework designed to provide maximum flexibility in FL research experiments.
By offering customizable features for data distribution, privacy parameters, and communication strategies, FLEX empowers researchers to innovate and develop novel FL techniques.
arXiv Detail & Related papers (2024-04-09T08:51:05Z) - Federated Learning with New Knowledge: Fundamentals, Advances, and
Futures [69.8830772538421]
This paper systematically defines the main sources of new knowledge in Federated Learning (FL)
We examine the impact of the form and timing of new knowledge arrival on the incorporation process.
We discuss the potential future directions for FL with new knowledge, considering a variety of factors such as scenario setups, efficiency, and security.
arXiv Detail & Related papers (2024-02-03T21:29:31Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - An Empirical Study of Federated Learning on IoT-Edge Devices: Resource
Allocation and Heterogeneity [2.055204980188575]
Federated Learning (FL) is a distributed approach in which a single server and multiple clients collaboratively build an ML model without moving data away from clients.
In this study, we systematically conduct extensive experiments on a large network of IoT and edge devices (called IoT-Edge devices) to present FL real-world characteristics.
arXiv Detail & Related papers (2023-05-31T13:16:07Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
We propose a novel and comprehensive federated learning platform, named FederatedScope, which is based on a message-oriented framework.
Compared to the procedural framework, the proposed message-oriented framework is more flexible to express heterogeneous message exchange.
We conduct a series of experiments on the provided easy-to-use and comprehensive FL benchmarks to validate the correctness and efficiency of FederatedScope.
arXiv Detail & Related papers (2022-04-11T11:24:21Z) - Vertical Federated Learning: Challenges, Methodologies and Experiments [34.4865409422585]
vertical learning (VFL) is capable of constructing a hyper ML model by embracing sub-models from different clients.
In this paper, we discuss key challenges in VFL with effective solutions, and conduct experiments on real-life datasets.
arXiv Detail & Related papers (2022-02-09T06:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.