Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
- URL: http://arxiv.org/abs/2409.11585v1
- Date: Tue, 17 Sep 2024 22:20:26 GMT
- Title: Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
- Authors: Zilinghan Li, Shilan He, Ze Yang, Minseok Ryu, Kibaek Kim, Ravi Madduri,
- Abstract summary: Federated learning (FL) is a distributed machine learning paradigm enabling collaborative model training while preserving data privacy.
We present the recent advances in developing APPFL, a framework and benchmarking suite for federated learning.
We demonstrate the capabilities of APPFL through extensive experiments evaluating various aspects of FL, including communication efficiency, privacy preservation, computational performance, and resource utilization.
- Score: 1.4206132527980742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed machine learning paradigm enabling collaborative model training while preserving data privacy. In today's landscape, where most data is proprietary, confidential, and distributed, FL has become a promising approach to leverage such data effectively, particularly in sensitive domains such as medicine and the electric grid. Heterogeneity and security are the key challenges in FL, however; most existing FL frameworks either fail to address these challenges adequately or lack the flexibility to incorporate new solutions. To this end, we present the recent advances in developing APPFL, an extensible framework and benchmarking suite for federated learning, which offers comprehensive solutions for heterogeneity and security concerns, as well as user-friendly interfaces for integrating new algorithms or adapting to new applications. We demonstrate the capabilities of APPFL through extensive experiments evaluating various aspects of FL, including communication efficiency, privacy preservation, computational performance, and resource utilization. We further highlight the extensibility of APPFL through case studies in vertical, hierarchical, and decentralized FL. APPFL is open-sourced at https://github.com/APPFL/APPFL.
Related papers
- Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data.
Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL.
We propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions.
arXiv Detail & Related papers (2024-10-11T15:10:38Z) - FLEX: FLEXible Federated Learning Framework [6.112199274064954]
This paper introduces FLEX: a FLEXible Federated Learning Framework designed to provide maximum flexibility in FL research experiments.
By offering customizable features for data distribution, privacy parameters, and communication strategies, FLEX empowers researchers to innovate and develop novel FL techniques.
arXiv Detail & Related papers (2024-04-09T08:51:05Z) - Federated Learning with New Knowledge: Fundamentals, Advances, and
Futures [69.8830772538421]
This paper systematically defines the main sources of new knowledge in Federated Learning (FL)
We examine the impact of the form and timing of new knowledge arrival on the incorporation process.
We discuss the potential future directions for FL with new knowledge, considering a variety of factors such as scenario setups, efficiency, and security.
arXiv Detail & Related papers (2024-02-03T21:29:31Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
The evolution of privacy-preserving Federated Learning (FL) has led to an increasing demand for implementing the right to be forgotten.
The implementation of selective forgetting is particularly challenging in FL due to its decentralized nature.
Federated Unlearning (FU) emerges as a strategic solution to address the increasing need for data privacy.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - ModularFed: Leveraging Modularity in Federated Learning Frameworks [8.139264167572213]
We propose a research-focused framework that addresses the complexity of Federated Learning (FL) implementations.
Within this architecture, protocols are blueprints that strictly define the framework's components' design.
Our protocols aim to enable modularity in FL, supporting third-party plug-and-play architecture and dynamic simulators.
arXiv Detail & Related papers (2022-10-31T10:21:19Z) - Introducing Federated Learning into Internet of Things ecosystems --
preliminary considerations [0.31402652384742363]
Federated learning (FL) was proposed to facilitate the training of models in a distributed environment.
It supports the protection of (local) data privacy and uses local resources for model training.
arXiv Detail & Related papers (2022-07-15T18:48:57Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
We propose a novel and comprehensive federated learning platform, named FederatedScope, which is based on a message-oriented framework.
Compared to the procedural framework, the proposed message-oriented framework is more flexible to express heterogeneous message exchange.
We conduct a series of experiments on the provided easy-to-use and comprehensive FL benchmarks to validate the correctness and efficiency of FederatedScope.
arXiv Detail & Related papers (2022-04-11T11:24:21Z) - APPFL: Open-Source Software Framework for Privacy-Preserving Federated
Learning [0.0]
Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in classical machine learning.
We introduce APPFL, the Argonne Privacy-Preserving Federated Learning framework.
APPFL allows users to leverage implemented privacy-preserving algorithms, implement new algorithms, and simulate and deploy various FL algorithms with privacy-preserving techniques.
arXiv Detail & Related papers (2022-02-08T06:23:05Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.