論文の概要: The Role of Linear Layers in Nonlinear Interpolating Networks
- arxiv url: http://arxiv.org/abs/2202.00856v1
- Date: Wed, 2 Feb 2022 02:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 14:55:47.594882
- Title: The Role of Linear Layers in Nonlinear Interpolating Networks
- Title(参考訳): 非線形補間ネットワークにおける線形層の役割
- Authors: Greg Ongie, Rebecca Willett
- Abstract要約: 我々のフレームワークは、すべて同じキャパシティを持つが、暗黙的に定義された表現コストを持つ、様々な深さのネットワークのファミリーを考察する。
ニューラルネットワークアーキテクチャによって誘導される関数の表現コストは、関数を表現するためにネットワークに必要な2乗重みの最小和である。
この結果から,ReLUネットワークに線形層を追加することで,ReLUユニットのアライメントとスパシティの複雑な相互作用を反映した表現コストが得られることがわかった。
- 参考スコア(独自算出の注目度): 13.25706838589123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the implicit bias of overparameterized neural networks of
depth greater than two layers. Our framework considers a family of networks of
varying depth that all have the same capacity but different implicitly defined
representation costs. The representation cost of a function induced by a neural
network architecture is the minimum sum of squared weights needed for the
network to represent the function; it reflects the function space bias
associated with the architecture. Our results show that adding linear layers to
a ReLU network yields a representation cost that reflects a complex interplay
between the alignment and sparsity of ReLU units. Specifically, using a neural
network to fit training data with minimum representation cost yields an
interpolating function that is constant in directions perpendicular to a
low-dimensional subspace on which a parsimonious interpolant exists.
- Abstract(参考訳): 本稿では,2層以上の深さの過パラメータニューラルネットワークの暗黙バイアスについて検討する。
我々のフレームワークは、すべて同じキャパシティを持つが、暗黙的に定義された表現コストを持つ、様々な深さのネットワークのファミリーを考察する。
ニューラルネットワークアーキテクチャによって引き起こされる関数の表現コストは、ネットワークが関数を表現するのに必要な2乗重みの最小和である。
この結果から,ReLUネットワークに線形層を追加することで,ReLUユニットのアライメントとスパシティの複雑な相互作用を反映した表現コストが得られることがわかった。
具体的には、ニューラルネットワークを用いて最小表現コストでトレーニングデータを適合させると、擬似補間剤が存在する低次元部分空間に垂直な方向の補間関数が得られる。
関連論文リスト
- Task structure and nonlinearity jointly determine learned
representational geometry [0.0]
本稿では,Tanhネットワークが対象出力の構造を反映した表現を学習する傾向を示し,ReLUネットワークは生入力の構造についてより多くの情報を保持することを示した。
我々の研究結果は、入力出力幾何学、非線形性、ニューラルネットワークにおける学習表現との相互作用に光を当てた。
論文 参考訳(メタデータ) (2024-01-24T16:14:38Z) - Variation Spaces for Multi-Output Neural Networks: Insights on Multi-Task Learning and Network Compression [28.851519959657466]
本稿では,ベクトル値ニューラルネットワークの解析のための新しい理論的枠組みを提案する。
この研究の重要な貢献は、ベクトル値変動空間に対する表現定理の開発である。
これらのベクトル値変動空間に関連するノルムは、複数のタスクに有用な特徴の学習を促進する。
論文 参考訳(メタデータ) (2023-05-25T23:32:10Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
この原稿は、2層以上の深さのニューラルネットワークによって学習された関数の性質が予測にどのように影響するかを考察している。
我々のフレームワークは、すべて同じキャパシティを持つが表現コストが異なる、様々な深さのネットワーク群を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-24T22:10:12Z) - Function Space and Critical Points of Linear Convolutional Networks [4.483341215742946]
一次元畳み込み層を有する線形ネットワークの幾何学について検討する。
我々は,ネットワークアーキテクチャが関数空間の次元,境界,特異点に与える影響を分析する。
論文 参考訳(メタデータ) (2023-04-12T10:15:17Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Theory of Deep Convolutional Neural Networks III: Approximating Radial
Functions [7.943024117353317]
我々は、2つの畳み込み層、ダウン演算子、完全に接続された層からなるディープニューラルネットワークのファミリーを考える。
ネットワーク構造は、畳み込み層の数と完全に連結された層の幅を決定する2つの構造パラメータに依存する。
論文 参考訳(メタデータ) (2021-07-02T08:22:12Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
様々な最先端の畳み込みニューラルネットワークの最後に隠された層表現について検討する。
最後に隠された表現が十分に広ければ、そのニューロンは同一の情報を持つグループに分裂し、統計的に独立したノイズによってのみ異なる傾向にある。
論文 参考訳(メタデータ) (2021-06-07T10:18:54Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。