論文の概要: A Longitudinal Dataset of Twitter ISIS Users
- arxiv url: http://arxiv.org/abs/2202.00878v1
- Date: Wed, 2 Feb 2022 05:03:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 22:04:20.932353
- Title: A Longitudinal Dataset of Twitter ISIS Users
- Title(参考訳): Twitter ISIS利用者の縦断データ
- Authors: Younes Karimi, Anna Squicciarini, Peter K. Forster, Kira M. Leavitt
- Abstract要約: 我々は、ISISに関連があると思われる2つのユーザーからのツイートの大規模な時系列データセットを提示する。
これらのユーザーは、2014-2015年に少なくとも1回ISISアカウントと関わり、2021年時点でもアクティブである。
また、ISISのツイートを引用したユーザーの中には、ISISのシードアカウントと不確実なつながりがある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a large longitudinal dataset of tweets from two sets of users that
are suspected to be affiliated with ISIS. These sets of users are identified
based on a prior study and a campaign aimed at shutting down ISIS Twitter
accounts. These users have engaged with known ISIS accounts at least once
during 2014-2015 and are still active as of 2021. Some of them have directly
supported the ISIS users and their tweets by retweeting them, and some of the
users that have quoted tweets of ISIS, have uncertain connections to ISIS seed
accounts. This study and the dataset represent a unique approach to analyzing
ISIS data. Although much research exists on ISIS online activities, few studies
have focused on individual accounts. Our approach to validating accounts as
well as developing a framework for differentiating accounts' functionality
(e.g., propaganda versus operational planning) offers a foundation for future
research. We perform some descriptive statistics and preliminary analyses on
our collected data to provide deeper insight and highlight the significance and
practicality of such analyses. We further discuss several cross-disciplinary
potential use cases and research directions.
- Abstract(参考訳): ISISに関連があると思われる2つのユーザーからのツイートの大規模な時系列データセットを提示する。
これらのユーザー集合は、以前の調査とISISのTwitterアカウントをシャットダウンするキャンペーンに基づいて特定される。
これらのユーザーは、2014-2015年に少なくとも1回ISISアカウントと関わり、2021年時点でもアクティブである。
また、ISISのツイートを引用したユーザーの中には、ISISのシードアカウントと不確実なつながりがある。
この研究とデータセットは、ISISデータを分析するためのユニークなアプローチである。
ISISのオンライン活動には多くの研究があるが、個々のアカウントに焦点を当てた研究はほとんどない。
アカウントを検証し、アカウントの機能(例えば、プロパガンダ対運用計画)を識別するためのフレームワークを開発するというアプローチは、将来の研究の基盤となる。
収集したデータについて,いくつかの記述的統計と予備分析を行い,その意義と実用性を明らかにする。
さらに,いくつかの学際的応用事例と研究の方向性について論じる。
関連論文リスト
- Poisoning Web-Scale Training Datasets is Practical [73.34964403079775]
モデルの性能に悪意のある事例を意図的に導入する2つの新しいデータセット中毒攻撃を導入する。
最初の攻撃、スプリットビュー中毒は、インターネットコンテンツの不変性を利用して、データセットアノテータの初期ビューが、その後のクライアントがダウンロードしたビューとは異なることを保証します。
第2の攻撃、フロントラン中毒は、クラウドソースされたコンテンツを定期的にスナップショットするWebスケールデータセットをターゲットにしている。
論文 参考訳(メタデータ) (2023-02-20T18:30:54Z) - Twitter Dataset on the Russo-Ukrainian War [68.713984286035]
Twitter APIから現在進行中のデータセットの取得を開始しています。
データセットは770万人のユーザーを起源とする5730万ツイートに達している。
我々は、最初のボリュームと感情分析を適用し、データセットはトピック分析、ヘイトスピーチ、プロパガンダ認識、ボットネットのような潜在的な悪意のあるエンティティを示すためにさらに探索的な調査に使用することができる。
論文 参考訳(メタデータ) (2022-04-07T12:33:06Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Discourse Analysis of Covid-19 in Persian Twitter Social Networks Using
Graph Mining and Natural Language Processing [0.0]
調査されたビッグデータは、ペルシャのTwitterネットワークのユーザ16万から500万のツイートだ。
分析されたイラン社会は、自分たちがコビッド19の悪い問題に責任があるとは考えていない。
最も活発で影響力のある利用者の類似性は、政治的、国家的、批判的な談話の構築が主なものであることである。
論文 参考訳(メタデータ) (2021-09-01T10:39:20Z) - Towards A Sentiment Analyzer for Low-Resource Languages [0.0]
本研究は,当時盛んに議論されてきた特定のトレンドトピックに対して,ユーザの感情を分析することを目的としている。
2019年のインドネシア大統領選挙で話題になったハッシュタグのtextit#kpujangancurangを使っています。
本研究は,ラピッドマイニングツールを用いて,Twitterデータを生成し,Nieve Bayes,K-Nearest Neighbor,Decision Tree,Multi-Layer Perceptronの分類手法を比較し,Twitterデータの感情を分類する。
論文 参考訳(メタデータ) (2020-11-12T13:50:00Z) - Misleading Repurposing on Twitter [3.0254442724635173]
本研究は, ミスリーディング再資源化に関する最初の, 大規模研究である。
悪意のあるユーザーは、フォロワーを維持しながらアカウントを新しい目的に利用するために、プロフィール属性の変更などを通じて、ソーシャルメディアアカウントのアイデンティティを変更する。
本稿では,インターネットアーカイブのTwitter Stream Grabから収集したデータに対する教師あり学習を用いて,再利用されたアカウントにフラグを付ける手法と行動の定義を提案する。
論文 参考訳(メタデータ) (2020-10-20T20:19:01Z) - #ISIS vs #ActionCountersTerrorism: A Computational Analysis of Extremist
and Counter-extremist Twitter Narratives [2.685668802278155]
本研究は,様々な過激派・反過激派のTwitterアカウントのナラティブを分析するために,計算手法を適用した。
以上の結果から,反過激主義的アカウントは,異なるタイプの組織にまたがる反過激主義アカウントと比較して,コンテンツを広める戦略が異なることが示唆された。
論文 参考訳(メタデータ) (2020-08-26T20:46:45Z) - Writer Identification Using Microblogging Texts for Social Media
Forensics [53.180678723280145]
私たちは、文学的分析に広く使われている人気のあるスタイル的特徴と、URL、ハッシュタグ、返信、引用などの特定のTwitter機能を評価します。
我々は、様々なサイズの著者集合と、著者毎のトレーニング/テストテキストの量をテストする。
論文 参考訳(メタデータ) (2020-07-31T00:23:18Z) - Sentiment Analysis on Social Media Content [0.0]
本研究の目的は,Twitterから収集した実データの感情分析を行うモデルを提案することである。
Twitterのデータは非常に非構造化されており、分析が困難である。
提案手法は,教師付き機械学習アルゴリズムと教師なし機械学習アルゴリズムの併用により,この分野の先行研究とは異なる。
論文 参考訳(メタデータ) (2020-07-04T17:03:30Z) - Adversarial Fooling Beyond "Flipping the Label" [54.23547006072598]
CNNは、多くの重要なタスクにおいて、人間に近いか、人間のパフォーマンスよりも優れていることを示す。
これらの攻撃は、実際の展開において潜在的に危険である。
異なるCNNアーキテクチャの集合に対するいくつかの重要な敵攻撃を包括的に分析する。
論文 参考訳(メタデータ) (2020-04-27T13:21:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。