論文の概要: VOS:Learning What You Don't Know by Virtual Outlier Synthesis
- arxiv url: http://arxiv.org/abs/2202.01197v1
- Date: Wed, 2 Feb 2022 18:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 14:15:21.847509
- Title: VOS:Learning What You Don't Know by Virtual Outlier Synthesis
- Title(参考訳): VOS:バーチャル・アウトリア・シンセサイザーで知らないことを学ぶ
- Authors: Xuefeng Du, Zhaoning Wang, Mu Cai, Yixuan Li
- Abstract要約: 最近、ニューラルネットワークの安全なデプロイの重要性から、アウト・オブ・ディストリビューション(OOD)検出が注目されている。
従来のアプローチでは、モデル正則化に実際の外れ値データセットを頼っていた。
仮想外れ値の適応合成によるOOD検出のための新しいフレームワークであるVOSを提案する。
- 参考スコア(独自算出の注目度): 23.67449949146439
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Out-of-distribution (OOD) detection has received much attention lately due to
its importance in the safe deployment of neural networks. One of the key
challenges is that models lack supervision signals from unknown data, and as a
result, can produce overconfident predictions on OOD data. Previous approaches
rely on real outlier datasets for model regularization, which can be costly and
sometimes infeasible to obtain in practice. In this paper, we present VOS, a
novel framework for OOD detection by adaptively synthesizing virtual outliers
that can meaningfully regularize the model's decision boundary during training.
Specifically, VOS samples virtual outliers from the low-likelihood region of
the class-conditional distribution estimated in the feature space. Alongside,
we introduce a novel unknown-aware training objective, which contrastively
shapes the uncertainty space between the ID data and synthesized outlier data.
VOS achieves state-of-the-art performance on both object detection and image
classification models, reducing the FPR95 by up to 7.87% compared to the
previous best method. Code is available at
https://github.com/deeplearning-wisc/vos.
- Abstract(参考訳): 分散(ood)検出は、ニューラルネットワークの安全な展開における重要性から、近年多くの注目を集めている。
重要な課題の1つは、モデルは未知のデータからの監視信号が欠如しており、その結果、OODデータに対する過信的な予測を生成することができることである。
以前のアプローチでは、モデル正規化のために実際の外れたデータセットに依存している。
本稿では,トレーニング中にモデルの判断境界を有意義に定式化できる仮想外れ値の適応的合成によるood検出のための新しいフレームワークvosを提案する。
具体的には、VOSは、特徴空間で推定されるクラス条件分布の低線状領域から仮想外周をサンプリングする。
また,idデータ間の不確実性空間を対比的に形成し,不確実性データを合成する,新しい未知認識学習目標を提案する。
VOSはオブジェクト検出モデルと画像分類モデルの両方で最先端の性能を達成し、FPR95を以前の最良の手法と比較して最大7.87%削減した。
コードはhttps://github.com/deeplearning-wisc/vosで入手できる。
関連論文リスト
- Non-Linear Outlier Synthesis for Out-of-Distribution Detection [5.019613806273252]
本稿では,拡散モデル埋め込み空間で直接操作することで,合成外乱器の品質を向上させるNCISを提案する。
これらの改良により,標準的な ImageNet100 および CIFAR100 ベンチマークにおいて,最先端の OOD 検出結果が得られた。
論文 参考訳(メタデータ) (2024-11-20T09:47:29Z) - Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Forte : Finding Outliers with Representation Typicality Estimation [0.14061979259370275]
生成モデルは、それを訓練する実際のデータとほぼ区別できない合成データを生成することができる。
OOD検出に関する最近の研究は、生成モデルの可能性が最適なOOD検出器であるという疑念を提起している。
本稿では,表現学習と,多様体推定に基づく情報的要約統計を利用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T08:26:37Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Non-Parametric Outlier Synthesis [35.20765580915213]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習モデルを野生に安全にデプロイするのに不可欠である。
我々は,OOD学習データを生成する新しいフレームワークであるNon-Parametric Outlier Synthesis (NPOS)を提案する。
提案手法は, 数学的にリジェクションサンプリングフレームワークとして解釈できることを示す。
論文 参考訳(メタデータ) (2023-03-06T08:51:00Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Robust Out-of-Distribution Detection on Deep Probabilistic Generative
Models [0.06372261626436676]
アウト・オブ・ディストリビューション(OOD)検出は機械学習システムにおいて重要な課題である。
深い確率的生成モデルは、データサンプルの可能性を推定することによって、OODの検出を容易にする。
本稿では,外周露光を伴わない新しい検出指標を提案する。
論文 参考訳(メタデータ) (2021-06-15T06:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。