A multi-domain virtual network embedding algorithm with delay prediction
- URL: http://arxiv.org/abs/2202.01473v1
- Date: Thu, 3 Feb 2022 08:58:49 GMT
- Title: A multi-domain virtual network embedding algorithm with delay prediction
- Authors: Peiying Zhang, Xue Pang, Yongjing Ni, Haipeng Yao, Xin Li
- Abstract summary: We propose a multi-domain virtual network embedding algorithm based on delay prediction (DP-VNE)
The proposed algorithm can significantly reduce the system delay while keeping other indicators unaffected.
- Score: 7.636572411449277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual network embedding (VNE) is an crucial part of network virtualization
(NV), which aims to map the virtual networks (VNs) to a shared substrate
network (SN). With the emergence of various delay-sensitive applications, how
to improve the delay performance of the system has become a hot topic in
academic circles. Based on extensive research, we proposed a multi-domain
virtual network embedding algorithm based on delay prediction (DP-VNE).
Firstly, the candidate physical nodes are selected by estimating the delay of
virtual requests, then particle swarm optimization (PSO) algorithm is used to
optimize the mapping process, so as to reduce the delay of the system. The
simulation results show that compared with the other three advanced algorithms,
the proposed algorithm can significantly reduce the system delay while keeping
other indicators unaffected.
Related papers
- Decentralized Optimization in Time-Varying Networks with Arbitrary Delays [22.40154714677385]
We consider a decentralized optimization problem for networks affected by communication delays.
Examples of such networks include collaborative machine learning, sensor networks, and multi-agent systems.
To mimic communication delays, we add virtual non-computing nodes to the network, resulting in directed graphs.
arXiv Detail & Related papers (2024-05-29T20:51:38Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services.
In this paper, we investigate the collaborative inference problem in industrial IoT networks.
arXiv Detail & Related papers (2022-12-31T05:53:17Z) - A multi-domain VNE algorithm based on multi-objective optimization for
IoD architecture in Industry 4.0 [10.110571882165997]
The development of Internet of Drones (IoD) makes UAV operation more autonomous.
How to rationally allocate potential material resources has become an urgent problem to be solved.
arXiv Detail & Related papers (2022-02-08T07:56:28Z) - Multi Objective Resource Optimization of Wireless Network Based on Cross
Domain Virtual Network Embedding [6.019028366261091]
This paper implements a multi-objective optimization VNE algorithm for wireless network resource allocation.
According to the proposed objective formula, we consider the optimization mapping cost, network delay and VNR acceptance rate.
arXiv Detail & Related papers (2022-02-03T07:26:10Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
arXiv Detail & Related papers (2022-02-03T03:34:06Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.