IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode
- URL: http://arxiv.org/abs/2202.03488v1
- Date: Thu, 3 Feb 2022 03:34:06 GMT
- Title: IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode
- Authors: Peiying Zhang, Chao Wang, Gagangeet Singh Aujla, Neeraj Kumar, and
Mohsen Guizani
- Abstract summary: This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
- Score: 49.734868032441625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wireless network communication mode represented by the Internet of
vehicles (IoV) has been widely used. However, due to the limitations of
traditional network architecture, resource scheduling in wireless network
environment is still facing great challenges. This paper focuses on the
allocation of bandwidth resources in the virtual network environment. This
paper proposes a bandwidth aware multi domain virtual network embedding
algorithm (BA-VNE). The algorithm is mainly aimed at the problem that users
need a lot of bandwidth in wireless communication mode, and solves the problem
of bandwidth resource allocation from the perspective of virtual network
embedding (VNE). In order to improve the performance of the algorithm, we
introduce particle swarm optimization (PSO) algorithm to optimize the
performance of the algorithm. In order to verify the effectiveness of the
algorithm, we have carried out simulation experiments from link bandwidth,
mapping cost and virtual network request (VNR) acceptance rate. The final
results show that the proposed algorithm is better than other representative
algorithms in the above indicators.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
This article proposes a GNN-based algorithm to address the joint resource allocation problem in heterogeneous wireless networks.
Our proposed algorithm achieves satisfactory performance but with higher computational efficiency compared to traditional optimisation algorithms.
arXiv Detail & Related papers (2024-07-28T04:51:00Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - A Reinforcement Learning Approach to Optimize Available Network
Bandwidth Utilization [3.254879465902239]
We present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL)
Our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput.
arXiv Detail & Related papers (2022-11-22T02:00:05Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - A multi-domain virtual network embedding algorithm with delay prediction [7.636572411449277]
We propose a multi-domain virtual network embedding algorithm based on delay prediction (DP-VNE)
The proposed algorithm can significantly reduce the system delay while keeping other indicators unaffected.
arXiv Detail & Related papers (2022-02-03T08:58:49Z) - Multi Objective Resource Optimization of Wireless Network Based on Cross
Domain Virtual Network Embedding [6.019028366261091]
This paper implements a multi-objective optimization VNE algorithm for wireless network resource allocation.
According to the proposed objective formula, we consider the optimization mapping cost, network delay and VNR acceptance rate.
arXiv Detail & Related papers (2022-02-03T07:26:10Z) - Network Resource Allocation Strategy Based on Deep Reinforcement
Learning [4.751282319342761]
This paper proposes a two-stage VNE algorithm based on deep reinforcement learning (DRL) (TS-DRL-VNE)
For the problem that the existing VNE algorithm based on ML often ignores the importance of substrate network representation and training mode, a DRL VNE algorithm based on full attribute matrix (FAM-DRL-VNE) is proposed.
Experimental results show that the above algorithm is superior to other algorithms.
arXiv Detail & Related papers (2022-02-03T06:53:00Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.