A multi-domain VNE algorithm based on multi-objective optimization for
IoD architecture in Industry 4.0
- URL: http://arxiv.org/abs/2202.12830v1
- Date: Tue, 8 Feb 2022 07:56:28 GMT
- Title: A multi-domain VNE algorithm based on multi-objective optimization for
IoD architecture in Industry 4.0
- Authors: Peiying Zhang, Chao Wang, Zeyu Qin, Haotong Cao
- Abstract summary: The development of Internet of Drones (IoD) makes UAV operation more autonomous.
How to rationally allocate potential material resources has become an urgent problem to be solved.
- Score: 10.110571882165997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicle (UAV) has a broad application prospect in the future,
especially in the Industry 4.0. The development of Internet of Drones (IoD)
makes UAV operation more autonomous. Network virtualization technology is a
promising technology to support IoD, so the allocation of virtual resources
becomes a crucial issue in IoD. How to rationally allocate potential material
resources has become an urgent problem to be solved. The main work of this
paper is presented as follows: (1) In order to improve the optimization
performance and reduce the computation time, we propose a multi-domain virtual
network embedding algorithm (MP-VNE) adopting the centralized hierarchical
multi-domain architecture. The proposed algorithm can avoid the local optimum
through incorporating the genetic variation factor into the traditional
particle swarm optimization process. (2) In order to simplify the
multi-objective optimization problem, we transform the multi-objective problem
into a single-objective problem through weighted summation method. The results
prove that the proposed algorithm can rapidly converge to the optimal solution.
(3) In order to reduce the mapping cost, we propose an algorithm for selecting
candidate nodes based on the estimated mapping cost. Each physical domain
calculates the estimated mapping cost of all nodes according to the formula of
the estimated mapping cost, and chooses the node with the lowest estimated
mapping cost as the candidate node. The simulation results show that the
proposed MP-VNE algorithm has better performance than MC-VNM, LID-VNE and other
algorithms in terms of delay, cost and comprehensive indicators.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems [3.6406488220483326]
A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation.
We propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems.
We show that our proposed method is superior in terms of speed and the attained optimal solutions.
arXiv Detail & Related papers (2022-12-03T09:22:54Z) - End-to-End Pareto Set Prediction with Graph Neural Networks for
Multi-objective Facility Location [10.130342722193204]
Facility location problems (FLPs) are a typical class of NP-hard optimization problems, which are widely seen in the supply chain and logistics.
In this paper, we consider the multi-objective facility location problem (MO-FLP) that simultaneously minimizes the overall cost and maximizes the system reliability.
Two graph neural networks are constructed to learn the implicit graph representation on nodes and edges.
arXiv Detail & Related papers (2022-10-27T07:15:55Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
We introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA.
MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts.
Experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.
arXiv Detail & Related papers (2022-09-30T03:40:10Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
We propose a novel prediction algorithm based on incremental support vector machine (ISVM)
We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process.
The proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
arXiv Detail & Related papers (2021-02-24T08:51:23Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
arXiv Detail & Related papers (2020-08-05T06:26:13Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Joint Multi-User DNN Partitioning and Computational Resource Allocation
for Collaborative Edge Intelligence [21.55340197267767]
Mobile Edge Computing (MEC) has emerged as a promising supporting architecture providing a variety of resources to the network edge.
With the assistance of edge servers, user equipments (UEs) are able to run deep neural network (DNN) based AI applications.
We propose an algorithm called Iterative Alternating Optimization (IAO) that can achieve the optimal solution in time.
arXiv Detail & Related papers (2020-07-15T09:40:13Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.