論文の概要: Weakly Supervised Nuclei Segmentation via Instance Learning
- arxiv url: http://arxiv.org/abs/2202.01564v1
- Date: Thu, 3 Feb 2022 12:51:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-04 14:48:57.548723
- Title: Weakly Supervised Nuclei Segmentation via Instance Learning
- Title(参考訳): インスタンス学習による弱教師付き核セグメンテーション
- Authors: Weizhen Liu, Qian He, Xuming He
- Abstract要約: 病理画像解析では,弱い教師付き核分割が重要な問題である。
弱教師付きセマンティックとインスタンスセグメンテーションを分離することを提案する。
本手法は,病理画像の2つの公開ベンチマークにおける最先端性能を実現する。
- 参考スコア(独自算出の注目度): 30.392562834466613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised nuclei segmentation is a critical problem for pathological
image analysis and greatly benefits the community due to the significant
reduction of labeling cost. Adopting point annotations, previous methods mostly
rely on less expressive representations for nuclei instances and thus have
difficulty in handling crowded nuclei. In this paper, we propose to decouple
weakly supervised semantic and instance segmentation in order to enable more
effective subtask learning and to promote instance-aware representation
learning. To achieve this, we design a modular deep network with two branches:
a semantic proposal network and an instance encoding network, which are trained
in a two-stage manner with an instance-sensitive loss. Empirical results show
that our approach achieves the state-of-the-art performance on two public
benchmarks of pathological images from different types of organs.
- Abstract(参考訳): 弱い教師付き核セグメンテーションは病理画像解析において重要な問題であり、ラベリングコストの大幅な削減によりコミュニティに大きな利益がある。
ポイントアノテーションを採用すると、従来のメソッドは、主に核インスタンスの表現表現が少ないため、混み合った核を扱うのが困難になる。
本稿では,より効果的なサブタスク学習を実現するために,弱教師付きセマンティクスとインスタンスセマンティクスを分離し,インスタンス認識表現学習を促進することを提案する。
これを実現するために、セマンティック・プロポーザル・ネットワークとインスタンス・エンコーディング・ネットワークという2つのブランチを持つモジュール型のディープ・ネットワークを設計し、インスタンスに敏感な損失を伴って2段階的に訓練する。
実験の結果, 臓器の病理像を2つの公開ベンチマークで評価し, 現状の成果が得られた。
関連論文リスト
- Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
少数ショット学習(FSL)の観点から、アノテーション効率の良い核インスタンスセグメンテーションを定式化することを提案する。
我々の研究は、計算病理学の隆盛とともに、多くの完全注釈付きデータセットが一般に公開されていることに動機づけられた。
いくつかの公開データセットに対する大規模な実験は、SGFSISが他のアノテーション効率のよい学習ベースラインより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-26T03:49:18Z) - Cyclic Learning: Bridging Image-level Labels and Nuclei Instance
Segmentation [19.526504045149895]
本稿では,この問題を解決するために,循環学習と呼ばれる画像レベルの弱教師付き手法を提案する。
サイクルラーニングは、フロントエンドの分類タスクと、バックエンドの半教師付きインスタンスセグメンテーションタスクで構成される。
3つのデータセットを用いた実験は、核インスタンスのセグメンテーションにおいて、他の画像レベルの弱教師付き手法よりも優れた、我々の手法の優れた一般性を示す。
論文 参考訳(メタデータ) (2023-06-05T08:32:12Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
本稿では,ラベル効率の高いセグメンテーション手法について概説する。
まず,様々な種類の弱いラベルによって提供される監督に従って,これらの手法を整理する分類法を開発する。
次に,既存のラベル効率のセグメンテーション手法を統一的な視点から要約する。
論文 参考訳(メタデータ) (2022-07-04T06:21:01Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Point-supervised Segmentation of Microscopy Images and Volumes via
Objectness Regularization [2.243486411968779]
この作業により、イメージ上のセマンティックセグメンテーションネットワークのトレーニングが、1インスタンスあたりのトレーニングのための単一のポイントで可能になる。
デジタル病理学における挑戦的なデータセットにおけるポイント・スーパーバイザーのセマンティクス・セグメンテーションの最先端に対する競争結果を達成します。
論文 参考訳(メタデータ) (2021-03-09T18:40:00Z) - A Weakly-Supervised Semantic Segmentation Approach based on the Centroid
Loss: Application to Quality Control and Inspection [6.101839518775968]
本稿では,新しい損失関数を用いた弱教師付きセマンティックセマンティックセマンティクス手法の提案と評価を行う。
アプローチのパフォーマンスは,2つの業界関連ケーススタディのデータセットに対して評価される。
論文 参考訳(メタデータ) (2020-10-26T09:08:21Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - NINEPINS: Nuclei Instance Segmentation with Point Annotations [2.19221864553448]
本稿では,ポイントアノテーションから自動生成される擬似ラベルセグメンテーションを用いたサンプルセグメンテーションのアルゴリズムを提案する。
生成されたセグメンテーションマスクを用いて、提案手法は、インスタンスセグメンテーションを実現するために、HoVer-Netモデルの修正版を訓練する。
実験結果から,提案手法はポイントアノテーションの不正確性に対して頑健であり,完全注釈付きインスタンスマスクを用いたHover-Netと比較すると,セグメンテーション性能の劣化が必ずしも組織分類などの高次タスクの劣化を意味するとは限らないことが示唆された。
論文 参考訳(メタデータ) (2020-06-24T08:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。