Predicting the impact of urban change in pedestrian and road safety
- URL: http://arxiv.org/abs/2202.01781v1
- Date: Thu, 3 Feb 2022 10:37:51 GMT
- Title: Predicting the impact of urban change in pedestrian and road safety
- Authors: Cristina Bustos, Daniel Rhoads, Agata Lapedriza, Javier
Borge-Holthoefer, and Albert Sol\'e-Ribalta
- Abstract summary: Recent work has shown that Convolutional Neural Networks are able to accurately predict accident rates exploiting Street View imagery.
We detail how to automatically predict the impact (increase or decrease) of urban interventions on accident incidence.
Considering the transportation network substrates (sidewalk and road networks) and their demand, we integrate these results to a complex network framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increased interaction between and among pedestrians and vehicles in the
crowded urban environments of today gives rise to a negative side-effect: a
growth in traffic accidents, with pedestrians being the most vulnerable
elements. Recent work has shown that Convolutional Neural Networks are able to
accurately predict accident rates exploiting Street View imagery along urban
roads. The promising results point to the plausibility of aided design of safe
urban landscapes, for both pedestrians and vehicles. In this paper, by
considering historical accident data and Street View images, we detail how to
automatically predict the impact (increase or decrease) of urban interventions
on accident incidence. The results are positive, rendering an accuracies
ranging from 60 to 80%. We additionally provide an interpretability analysis to
unveil which specific categories of urban features impact accident rates
positively or negatively. Considering the transportation network substrates
(sidewalk and road networks) and their demand, we integrate these results to a
complex network framework, to estimate the effective impact of urban change on
the safety of pedestrians and vehicles. Results show that public authorities
may leverage on machine learning tools to prioritize targeted interventions,
since our analysis show that limited improvement is obtained with current
tools. Further, our findings have a wider application range such as the design
of safe urban routes for pedestrians or to the field of driver-assistance
technologies.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - Eyes on the Streets: Leveraging Street-Level Imaging to Model Urban Crime Dynamics [0.0]
This study addresses the challenge of urban safety in New York City by examining the relationship between the built environment and crime rates.
We aim to identify how urban landscapes correlate with crime statistics, focusing on the characteristics of street views and their association with crime rates.
arXiv Detail & Related papers (2024-04-15T21:33:45Z) - The ubiquitous efficiency of going further: how street networks affect
travel speed [0.0]
We conducted a study of over 200 cities around the world to understand the impact that the patterns of deceleration points in streets due to traffic signs has in trajectories done from motorized vehicles.
We demonstrate that there is a ubiquitous nonlinear relationship between time and distance in the optimal trajectories within each city.
arXiv Detail & Related papers (2021-11-15T14:38:06Z) - Explainable, automated urban interventions to improve pedestrian and
vehicle safety [0.8620335948752805]
This paper combines public data sources, large-scale street imagery and computer vision techniques to approach pedestrian and vehicle safety.
The steps involved in this pipeline include the adaptation and training of a Residual Convolutional Neural Network to determine a hazard index for each given urban scene.
The outcome of this computational approach is a fine-grained map of hazard levels across a city, and an identify interventions that might simultaneously improve pedestrian and vehicle safety.
arXiv Detail & Related papers (2021-10-22T09:17:39Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Automated Object Behavioral Feature Extraction for Potential Risk
Analysis based on Video Sensor [6.291501119156943]
Pedestrians are exposed to risk of death or serious injuries on roads, especially unsignalized crosswalks.
We propose an automated and simpler system for effectively extracting object behavioral features from video sensors deployed on the road.
This study demonstrates the potential for a network of connected video sensors to provide actionable data for smart cities.
arXiv Detail & Related papers (2021-07-08T01:11:31Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - Decoding pedestrian and automated vehicle interactions using immersive
virtual reality and interpretable deep learning [6.982614422666432]
This study investigates pedestrian crossing behaviour, as an important element of urban dynamics that is expected to be affected by the presence of automated vehicles.
Pedestrian wait time behaviour is then analyzed using a data-driven Cox Proportional Hazards (CPH) model.
Results show that the presence of automated vehicles on roads, wider lane widths, high density on roads, limited sight distance, and lack of walking habits are the main contributing factors to longer wait times.
arXiv Detail & Related papers (2020-02-18T01:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.