Brain Cancer Survival Prediction on Treatment-na ive MRI using Deep
Anchor Attention Learning with Vision Transformer
- URL: http://arxiv.org/abs/2202.01857v1
- Date: Thu, 3 Feb 2022 21:33:08 GMT
- Title: Brain Cancer Survival Prediction on Treatment-na ive MRI using Deep
Anchor Attention Learning with Vision Transformer
- Authors: Xuan Xu, Prateek Prasanna
- Abstract summary: Image-based brain cancer prediction models quantify the radiologic phenotype from magnetic resonance imaging (MRI)
Despite evidence of intra-tumor phenotypic heterogeneity, the spatial diversity between different slices within an MRI scan has been relatively unexplored using such methods.
We propose a deep anchor attention aggregation strategy with a Vision Transformer to predict survival risk for brain cancer patients.
- Score: 4.630654643366308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based brain cancer prediction models, based on radiomics, quantify the
radiologic phenotype from magnetic resonance imaging (MRI). However, these
features are difficult to reproduce because of variability in acquisition and
preprocessing pipelines. Despite evidence of intra-tumor phenotypic
heterogeneity, the spatial diversity between different slices within an MRI
scan has been relatively unexplored using such methods. In this work, we
propose a deep anchor attention aggregation strategy with a Vision Transformer
to predict survival risk for brain cancer patients. A Deep Anchor Attention
Learning (DAAL) algorithm is proposed to assign different weights to
slice-level representations with trainable distance measurements. We evaluated
our method on N = 326 MRIs. Our results outperformed attention multiple
instance learning-based techniques. DAAL highlights the importance of critical
slices and corroborates the clinical intuition that inter-slice spatial
diversity can reflect disease severity and is implicated in outcome.
Related papers
- Unpaired Volumetric Harmonization of Brain MRI with Conditional Latent Diffusion [13.563413478006954]
We propose a novel 3D MRI Harmonization framework through Conditional Latent Diffusion (HCLD)
It comprises a generalizable 3D autoencoder that encodes and decodes MRIs through a 4D latent space.
HCLD learns the latent distribution and generates harmonized MRIs with anatomical information from source MRIs while conditioned on target image style.
arXiv Detail & Related papers (2024-08-18T00:13:48Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer.
In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from MRI scans.
arXiv Detail & Related papers (2023-09-11T22:41:52Z) - Harmonization Across Imaging Locations(HAIL): One-Shot Learning for
Brain MRI [4.8296943294326145]
We propose a one-shot learning method where we utilize neural style transfer for harmonization.
At test time, the method uses one image from a clinical site to generate an image that matches the intensity scale of the collaborating sites.
Experimental results demonstrate the effectiveness of our method in preserving patient anatomy while adjusting the image intensities to a new clinical site.
arXiv Detail & Related papers (2023-08-21T21:13:30Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.