Quasi-Random Physics-informed Neural Networks
- URL: http://arxiv.org/abs/2507.08121v1
- Date: Thu, 10 Jul 2025 19:15:43 GMT
- Title: Quasi-Random Physics-informed Neural Networks
- Authors: Tianchi Yu, Ivan Oseledets,
- Abstract summary: This paper proposes Quasi-Random Physics-Informed Neural Networks (QRPINNs), which use low-discrepancy sequences for sampling instead of random points directly from the domain.<n>Experiments demonstrate that QRPINNs significantly outperform PINNs and some representative adaptive sampling methods, especially in high-dimensional PDEs.
- Score: 4.347494885647007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks have shown promise in solving partial differential equations (PDEs) by integrating physical constraints into neural network training, but their performance is sensitive to the sampling of points. Based on the impressive performance of quasi Monte-Carlo methods in high dimensional problems, this paper proposes Quasi-Random Physics-Informed Neural Networks (QRPINNs), which use low-discrepancy sequences for sampling instead of random points directly from the domain. Theoretically, QRPINNs have been proven to have a better convergence rate than PINNs. Empirically, experiments demonstrate that QRPINNs significantly outperform PINNs and some representative adaptive sampling methods, especially in high-dimensional PDEs. Furthermore, combining QRPINNs with adaptive sampling can further improve the performance.
Related papers
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
Physics-informed neural networks (PINNs) have earned high expectations in solving partial differential equations (PDEs)<n>Previous research observed the propagation failure phenomenon of PINNs.<n>This paper provides a formal and in-depth study of propagation failure and its root cause.
arXiv Detail & Related papers (2025-02-02T13:56:38Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Parallel-in-Time Solutions with Random Projection Neural Networks [0.07282584715927627]
This paper considers one of the fundamental parallel-in-time methods for the solution of ordinary differential equations, Parareal, and extends it by adopting a neural network as a coarse propagator.
We provide a theoretical analysis of the convergence properties of the proposed algorithm and show its effectiveness for several examples, including Lorenz and Burgers' equations.
arXiv Detail & Related papers (2024-08-19T07:32:41Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Feature Mapping in Physics-Informed Neural Networks (PINNs) [1.9819034119774483]
We study the training dynamics of PINNs with a feature mapping layer via the limiting Conjugate Kernel and Neural Tangent Kernel.
We propose conditionally positive definite Radial Basis Function as a better alternative.
arXiv Detail & Related papers (2024-02-10T13:51:09Z) - Moving Sampling Physics-informed Neural Networks induced by Moving Mesh PDE [4.460242992367118]
We propose an end-to-end adaptive sampling neural network (MMPDE-Net) based on the moving mesh method.
We develop an iterative algorithm based on MMPDE-Net, which makes the sampling points more precise and controllable.
arXiv Detail & Related papers (2023-11-14T19:43:56Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - Accelerating Physics-Informed Neural Network Training with Prior
Dictionaries [7.035456567972667]
We propose a variant called Prior Dictionary based Physics-Informed Neural Networks (PD-PINNs)
PD-PINNs enjoy enhanced representation power on the tasks, which helps to capture features provided by dictionaries.
It is proved that under certain mild conditions, the prediction error made by neural networks can be bounded by expected loss of PDEs and boundary conditions.
arXiv Detail & Related papers (2020-04-17T10:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.