論文の概要: Hybrid Neural Coded Modulation: Design and Training Methods
- arxiv url: http://arxiv.org/abs/2202.01972v1
- Date: Fri, 4 Feb 2022 05:04:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 01:08:37.392073
- Title: Hybrid Neural Coded Modulation: Design and Training Methods
- Title(参考訳): ハイブリッドニューラルコード変調:設計と訓練方法
- Authors: Sung Hoon Lim, Jiyong Han, Wonjong Noh, Yujae Song, Sang-Woon Jeon
- Abstract要約: 内部コードはディープニューラルネットワーク(DNN)を使用して設計されており、チャネル符号化されたビットを取り込み、変調されたシンボルを出力する。
得られた星座は5G標準LDPC符号で変調順序16,64の従来の2次振幅変調(QAM)に基づく符号化方式よりも優れていた。
- 参考スコア(独自算出の注目度): 16.778378666167026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid coded modulation scheme which composes of inner and outer
codes. The outer-code can be any standard binary linear code with efficient
soft decoding capability (e.g. low-density parity-check (LDPC) codes). The
inner code is designed using a deep neural network (DNN) which takes the
channel coded bits and outputs modulated symbols. For training the DNN, we
propose to use a loss function that is inspired by the generalized mutual
information. The resulting constellations are shown to outperform the
conventional quadrature amplitude modulation (QAM) based coding scheme for
modulation order 16 and 64 with 5G standard LDPC codes.
- Abstract(参考訳): 内部符号と外部符号を組み合わせたハイブリッド符号変調方式を提案する。
外符号は、効率的なソフトデコード機能(低密度パリティチェック(LDPC)符号など)を持つ任意の標準のバイナリコードである。
内部コードはディープニューラルネットワーク(dnn)を使用して設計され、チャネル符号化されたビットを受け取り、変調されたシンボルを出力する。
DNNを訓練するために,一般化された相互情報にインスパイアされた損失関数を提案する。
得られた星座は5G標準LDPC符号で変調順序16,64の従来の2次振幅変調(QAM)に基づく符号化方式よりも優れていた。
関連論文リスト
- Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
グラフニューラルネットワーク(GNN)に基づく量子低密度パリティチェック(QLDPC)符号の新しい復号法を提案する。
提案したGNNベースのQLDPCデコーダは,QLDPC符号のスパースグラフ構造を利用して,メッセージパスデコーダとして実装することができる。
論文 参考訳(メタデータ) (2024-08-09T16:47:49Z) - Collective Bit Flipping-Based Decoding of Quantum LDPC Codes [0.6554326244334866]
可変次数-3(dv-3)QLDPC符号の繰り返し復号化による誤り訂正性能と復号遅延の両方を改善した。
我々の復号方式は、ビットフリップ(BF)デコーディングの修正版、すなわち2ビットビットフリップ(TBF)デコーディングを適用することに基づいている。
論文 参考訳(メタデータ) (2024-06-24T18:51:48Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
本稿では,バイナリ線形ブロック符号の統一エンコーダデコーダトレーニングを初めて提案する。
また,コード勾配の効率的なバックプロパゲーションのために,自己注意マスキングを行うトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2024-05-07T06:47:12Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
低密度パリティチェック(LDPC)やBCH符号など、様々な符号化方式の競合復号性能を示す。
ニューラルネットワーク(NN)は、与えられたグラフ上で一般化されたメッセージパッシングアルゴリズムを学習する。
提案するデコーダを,従来のチャネル復号法および最近のディープラーニングに基づく結果と比較した。
論文 参考訳(メタデータ) (2022-07-29T15:29:18Z) - Deep Learning-Based Intra Mode Derivation for Versatile Video Coding [65.96100964146062]
本稿では,Deep Learning based intra Mode Derivation (DLIMD) と呼ばれるインテリジェントイントラモード導出法を提案する。
DLIMDのアーキテクチャは、異なる量子化パラメータ設定と、非平方要素を含む可変符号化ブロックに適応するように開発されている。
提案手法は,Versatile Video Coding (VVC) テストモデルを用いて,Y, U, Vコンポーネントの平均ビットレートを2.28%, 1.74%, 2.18%削減できる。
論文 参考訳(メタデータ) (2022-04-08T13:23:59Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
ランドマークコードは、Reed-Muller、BCH、Convolution、Turbo、LDPC、Polarといった信頼性の高い物理層通信を支える。
本論文では、ディープラーニング駆動型(エンコーダ、デコーダ)ペアの計算効率の良いファミリーであるKO符号を構築する。
KO符号は最先端のリード・ミュラー符号と極符号を破り、低複雑さの逐次復号法で復号された。
論文 参考訳(メタデータ) (2021-08-29T21:08:30Z) - Decoding 5G-NR Communications via Deep Learning [6.09170287691728]
本稿では,Deep Neural Network(DNN)と共同で自動符号化ニューラルネットワーク(ANN)を用いて,デマッピングとデコードのための自動符号化ディープニューラルネットワーク(ADNN)を構築することを提案する。
その結果、特定のBERターゲットに対して、AWGN(Additive White Gaussian Noise)チャネルにおいて、SNR(Signal to Noise Ratio)の$3$dBが要求されることが明らかになった。
論文 参考訳(メタデータ) (2020-07-15T12:00:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。