論文の概要: Boundary-aware Information Maximization for Self-supervised Medical
Image Segmentation
- arxiv url: http://arxiv.org/abs/2202.02371v1
- Date: Fri, 4 Feb 2022 20:18:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-13 19:59:06.748524
- Title: Boundary-aware Information Maximization for Self-supervised Medical
Image Segmentation
- Title(参考訳): 自己監督型医用画像分割のための境界認識情報最大化
- Authors: Jizong Peng, Ping Wang, Marco Pedersoli, Christian Desrosiers
- Abstract要約: コントラスト学習の欠点を回避するための,教師なし事前学習フレームワークを提案する。
2つのベンチマーク医用セグメンテーションデータセットによる実験結果から,アノテート画像が少ない場合の有効性が明らかになった。
- 参考スコア(独自算出の注目度): 13.828282295918628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised pre-training has been proven as an effective approach to boost
various downstream tasks given limited labeled data. Among various methods,
contrastive learning learns a discriminative representation by constructing
positive and negative pairs. However, it is not trivial to build reasonable
pairs for a segmentation task in an unsupervised way. In this work, we propose
a novel unsupervised pre-training framework that avoids the drawback of
contrastive learning. Our framework consists of two principles: unsupervised
over-segmentation as a pre-train task using mutual information maximization and
boundary-aware preserving learning. Experimental results on two benchmark
medical segmentation datasets reveal our method's effectiveness in improving
segmentation performance when few annotated images are available.
- Abstract(参考訳): 教師なし事前学習は、ラベル付きデータに制限された様々な下流タスクを強化する効果的な方法として証明されている。
様々な方法のうち、対照学習は正対と負対を構築して判別表現を学ぶ。
しかし、セグメンテーションタスクの合理的なペアを教師なしの方法で構築するのは簡単ではない。
本研究では,コントラスト学習の欠点を回避するための,教師なし事前学習フレームワークを提案する。
相互情報最大化と境界対応学習を用いた事前学習タスクとしての教師なしオーバーセグメンテーションの2つの原則から構成した。
2つのベンチマーク・メディカルセグメンテーションデータセットにおける実験結果から,アノテート画像の少ない場合のセグメンテーション性能向上効果が示された。
関連論文リスト
- Multi-organ Self-supervised Contrastive Learning for Breast Lesion
Segmentation [0.0]
本稿では,臓器関連目標タスクに適した事前学習モデルとして,多臓器データセットを用いる。
対象は超音波画像における乳腺腫瘍のセグメンテーションである。
その結果,従来のコントラスト学習事前学習は,教師付きベースラインアプローチに比べて性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-02-21T20:29:21Z) - Scribble-supervised Cell Segmentation Using Multiscale Contrastive
Regularization [9.849498498869258]
Scribble2Label (S2L) は、一握りのスクリブルと自己教師付き学習を使用することで、完全なアノテーションなしで正確なセグメンテーション結果を生成することを示した。
本研究では,S2Lに対して,新しいマルチスケールコントラスト正規化項を用いる。
主なアイデアは、ニューラルネットワークの中間層から特徴を抽出して、さまざまなスケールの構造を効果的に分離できるようにすることである。
論文 参考訳(メタデータ) (2023-06-25T06:00:33Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
コントラスト学習に基づく半教師付きセグメンテーションネットワークを提案する。
従来の最先端技術とは対照的に、両視点トレーニングの対照的な学習形式を導入する。
提案手法は、最先端の半教師付きおよび完全教師付きセグメンテーションアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2022-03-29T01:40:26Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
医用画像セグメンテーションのための新しい不確実性誘導相互整合学習フレームワークを提案する。
タスクレベルの正規化によるタスク内一貫性学習と、タスク間の整合性学習を統合して、幾何学的な形状情報を活用する。
本手法は,ラベルのないデータを活用し,既存の半教師付きセグメンテーション法より優れた性能を実現する。
論文 参考訳(メタデータ) (2021-12-05T08:19:41Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
ビデオオブジェクトセグメンテーション(VOS)のための教師なし学習のための新しいアプローチを提案する。
これまでの研究とは異なり、我々の定式化によって、完全に畳み込みの仕組みで、密集した特徴表現を直接学習することができる。
我々の手法は、トレーニングデータや計算能力が大幅に少ないにもかかわらず、以前の作業のセグメンテーション精度を超える。
論文 参考訳(メタデータ) (2021-11-11T15:15:11Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation [12.940103904327655]
半監督医療画像分割のための新しいデュアルタスク相互学習フレームワークを提案する。
我々のフレームワークは、2つのタスクに基づく2つの個別セグメンテーションネットワークの統合として定式化できる。
対象のセグメンテーション確率マップと符号付き距離マップを共同で学習することで,幾何学的形状制約を強制し,より信頼性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2021-03-08T12:38:23Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
画素埋め込みを学習するために、コントラスト最適化の目的として、予め決められた事前を取り入れた新しい2段階フレームワークを導入する。
これは、プロキシタスクやエンドツーエンドのクラスタリングに依存する既存の作業から大きく逸脱している。
特に、PASCALでラベル付き例の1%だけを用いて学習した表現を微調整すると、7.1% mIoUで教師付き ImageNet の事前トレーニングを上回ります。
論文 参考訳(メタデータ) (2021-02-11T18:54:47Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。