論文の概要: Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation
- arxiv url: http://arxiv.org/abs/2203.15177v1
- Date: Tue, 29 Mar 2022 01:40:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 16:36:48.541511
- Title: Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation
- Title(参考訳): Min-Max類似性: 手術ツールセグメンテーションのためのコントラスト学習に基づく半教師付き学習ネットワーク
- Authors: Ange Lou, Xing Yao, Ziteng Liu and Jack Noble
- Abstract要約: コントラスト学習に基づく半教師付きセグメンテーションネットワークを提案する。
従来の最先端技術とは対照的に、両視点トレーニングの対照的な学習形式を導入する。
提案手法は、最先端の半教師付きおよび完全教師付きセグメンテーションアルゴリズムを一貫して上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of images is a popular topic in medical AI. This is mainly due
to the difficulty to obtain a significant number of pixel-level annotated data
to train a neural network. To address this issue, we proposed a semi-supervised
segmentation network based on contrastive learning. In contrast to the previous
state-of-the-art, we introduce a contrastive learning form of dual-view
training by employing classifiers and projectors to build all-negative, and
positive and negative feature pairs respectively to formulate the learning
problem as solving min-max similarity problem. The all-negative pairs are used
to supervise the networks learning from different views and make sure to
capture general features, and the consistency of unlabeled predictions is
measured by pixel-wise contrastive loss between positive and negative pairs. To
quantitative and qualitative evaluate our proposed method, we test it on two
public endoscopy surgical tool segmentation datasets and one cochlear implant
surgery dataset which we manually annotate the cochlear implant in surgical
videos. The segmentation performance (dice coefficients) indicates that our
proposed method outperforms state-of-the-art semi-supervised and fully
supervised segmentation algorithms consistently. The code is publicly available
at: https://github.com/AngeLouCN/Min_Max_Similarity
- Abstract(参考訳): 画像のセグメンテーションは、医療AIにおいて一般的なトピックである。
これは主に、ニューラルネットワークをトレーニングするために大量のピクセルレベルの注釈データを取得することが難しいためである。
そこで本研究では,コントラスト学習に基づく半教師ありセグメンテーションネットワークを提案する。
従来の最先端技術とは対照的に,分類器とプロジェクタを併用して,全負,正,負の特徴対を構築し,学習問題をmin-max類似性問題の解法として定式化する。
全負対は、異なる視点から学習したネットワークを監督し、一般的な特徴を捉えるために使用され、ラベルなし予測の一貫性は、正対と負対の間の画素方向のコントラスト損失によって測定される。
提案法を定量的に評価するために,2つの公開内視鏡手術用ツールセグメンテーションデータセットと1つの人工内耳手術データセットを用いて,手動で人工内耳を注記した。
セグメンテーション性能(ディックス係数)は,提案手法が最先端の半教師付きおよび完全教師付きセグメンテーションアルゴリズムを一貫して上回ることを示す。
コードは、https://github.com/AngeLouCN/Min_Max_Similarityで公開されている。
関連論文リスト
- Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View [7.594796294925481]
本稿では,ビデオフレーム分割をグラフ分割問題として再検討し,教師なしの手法を提案する。
自己教師付き事前学習モデルは、まず、高レベルな意味的特徴をキャプチャする特徴抽出器として活用される。
ディープ」固有ベクトルでは、手術用ビデオフレームは、ツールや組織などの異なるモジュールに意味的に分割され、区別可能な意味情報を提供する。
論文 参考訳(メタデータ) (2024-08-27T05:31:30Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
腹腔鏡およびロボット手術画像に対する高価なアノテーションの必要性を低減するための半教師付き学習法であるSegMatchを提案する。
SegMatchは、一貫性の正規化と擬似ラベリングを組み合わせた、広範な半教師付き分類パイプラインであるFixMatch上に構築されている。
この結果から,学習目的に非競合データを追加することで,完全教師付きアプローチの性能を超越できることが示唆された。
論文 参考訳(メタデータ) (2023-08-09T21:30:18Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Efficient Self-Supervision using Patch-based Contrastive Learning for
Histopathology Image Segmentation [0.456877715768796]
画像パッチに対するコントラスト学習を用いた自己教師型画像分割のためのフレームワークを提案する。
完全畳み込みニューラルネットワーク(FCNN)は、入力画像の特徴を識別するために、自己教師型で訓練される。
提案したモデルは10.8kパラメータを持つ単純なFCNNで構成され、高解像度の顕微鏡データセットに収束するのに約5分を要する。
論文 参考訳(メタデータ) (2022-08-23T07:24:47Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Bootstrapping Semi-supervised Medical Image Segmentation with
Anatomical-aware Contrastive Distillation [10.877450596327407]
半教師型医用画像セグメンテーションのための解剖学的認識型ConTrastive dIstillatiONフレームワークであるACTIONを提案する。
まず, 正対と負対の2値監督ではなく, 負対をソフトにラベル付けして, 反復的コントラスト蒸留法を開発した。
また、サンプルデータの多様性を強制するために、ランダムに選択された負の集合から、より意味論的に類似した特徴を抽出する。
論文 参考訳(メタデータ) (2022-06-06T01:30:03Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image
Segmentation [14.535295064959746]
マルチビュー学習の概念に基づく半教師付き画像分割手法を提案する。
提案手法は,最先端の医用画像分割アルゴリズムを一貫して,快適に向上させる。
論文 参考訳(メタデータ) (2021-08-25T10:16:12Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。