Boundary-aware Information Maximization for Self-supervised Medical
Image Segmentation
- URL: http://arxiv.org/abs/2202.02371v1
- Date: Fri, 4 Feb 2022 20:18:00 GMT
- Title: Boundary-aware Information Maximization for Self-supervised Medical
Image Segmentation
- Authors: Jizong Peng, Ping Wang, Marco Pedersoli, Christian Desrosiers
- Abstract summary: We propose a novel unsupervised pre-training framework that avoids the drawback of contrastive learning.
Experimental results on two benchmark medical segmentation datasets reveal our method's effectiveness when few annotated images are available.
- Score: 13.828282295918628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised pre-training has been proven as an effective approach to boost
various downstream tasks given limited labeled data. Among various methods,
contrastive learning learns a discriminative representation by constructing
positive and negative pairs. However, it is not trivial to build reasonable
pairs for a segmentation task in an unsupervised way. In this work, we propose
a novel unsupervised pre-training framework that avoids the drawback of
contrastive learning. Our framework consists of two principles: unsupervised
over-segmentation as a pre-train task using mutual information maximization and
boundary-aware preserving learning. Experimental results on two benchmark
medical segmentation datasets reveal our method's effectiveness in improving
segmentation performance when few annotated images are available.
Related papers
- Multi-organ Self-supervised Contrastive Learning for Breast Lesion
Segmentation [0.0]
This paper employs multi-organ datasets for pre-training models tailored to specific organ-related target tasks.
Our target task is breast tumour segmentation in ultrasound images.
Results show that conventional contrastive learning pre-training improves performance compared to supervised baseline approaches.
arXiv Detail & Related papers (2024-02-21T20:29:21Z) - Scribble-supervised Cell Segmentation Using Multiscale Contrastive
Regularization [9.849498498869258]
Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation.
In this work, we employ a novel multiscale contrastive regularization term for S2L.
The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated.
arXiv Detail & Related papers (2023-06-25T06:00:33Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
We propose a semi-supervised segmentation network based on contrastive learning.
In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training.
Our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently.
arXiv Detail & Related papers (2022-03-29T01:40:26Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
We present a novel approach to unsupervised learning for video object segmentation (VOS)
Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime.
Our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
arXiv Detail & Related papers (2021-11-11T15:15:11Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation [12.940103904327655]
We propose a novel dual-task mutual learning framework for semi-supervised medical image segmentation.
Our framework can be formulated as an integration of two individual segmentation networks based on two tasks.
By jointly learning the segmentation probability maps and signed distance maps of targets, our framework can enforce the geometric shape constraint and learn more reliable information.
arXiv Detail & Related papers (2021-03-08T12:38:23Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
We introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings.
This marks a large deviation from existing works that relied on proxy tasks or end-to-end clustering.
In particular, when fine-tuning the learned representations using just 1% of labeled examples on PASCAL, we outperform supervised ImageNet pre-training by 7.1% mIoU.
arXiv Detail & Related papers (2021-02-11T18:54:47Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.