PENet: Object Detection using Points Estimation in Aerial Images
- URL: http://arxiv.org/abs/2001.08247v1
- Date: Wed, 22 Jan 2020 19:43:17 GMT
- Title: PENet: Object Detection using Points Estimation in Aerial Images
- Authors: Ziyang Tang, Xiang Liu, Guangyu Shen, and Baijian Yang
- Abstract summary: A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges.
PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects.
Our experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches.
- Score: 9.33900415971554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aerial imagery has been increasingly adopted in mission-critical tasks, such
as traffic surveillance, smart cities, and disaster assistance. However,
identifying objects from aerial images faces the following challenges: 1)
objects of interests are often too small and too dense relative to the images;
2) objects of interests are often in different relative sizes; and 3) the
number of objects in each category is imbalanced. A novel network structure,
Points Estimated Network (PENet), is proposed in this work to answer these
challenges. PENet uses a Mask Resampling Module (MRM) to augment the imbalanced
datasets, a coarse anchor-free detector (CPEN) to effectively predict the
center points of the small object clusters, and a fine anchor-free detector
FPEN to locate the precise positions of the small objects. An adaptive merge
algorithm Non-maximum Merge (NMM) is implemented in CPEN to address the issue
of detecting dense small objects, and a hierarchical loss is defined in FPEN to
further improve the classification accuracy. Our extensive experiments on
aerial datasets visDrone and UAVDT showed that PENet achieved higher precision
results than existing state-of-the-art approaches. Our best model achieved 8.7%
improvement on visDrone and 20.3% on UAVDT.
Related papers
- DASSF: Dynamic-Attention Scale-Sequence Fusion for Aerial Object Detection [6.635903943457569]
The original YOLO algorithm has low overall detection accuracy due to its weak ability to perceive targets of different scales.
This paper proposes a dynamic-attention scale-sequence fusion algorithm (DASSF) for small target detection in aerial images.
Experimental results show that when the DASSF method is applied to YOLOv8, compared to YOLOv8n, the model shows an increase of 9.2% and 2.4% in the mean average precision (mAP)
arXiv Detail & Related papers (2024-06-18T05:26:44Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
arXiv Detail & Related papers (2024-04-09T10:03:44Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
We propose a method to accurately detect small oriented objects in aerial images by enhancing the classification and regression tasks of the oriented object detection model.
We designed the Attention-Points Network consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss (BPLoss)
Experimental results show the effectiveness of our Attention-Points Network on a standard oriented aerial dataset with small object instances.
arXiv Detail & Related papers (2024-01-12T11:00:07Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
We propose a new Neighbor Erasing and Transferring (NET) mechanism to reconfigure the pyramid features and explore scale-aware features.
A single-shot network called NETNet is constructed for scale-aware object detection.
arXiv Detail & Related papers (2020-01-18T15:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.