Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting
- URL: http://arxiv.org/abs/2202.02543v1
- Date: Sat, 5 Feb 2022 12:54:17 GMT
- Title: Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting
- Authors: Guofeng Mei and Litao Yu and Qiang Wu and Jian Zhang
- Abstract summary: unsupervised representation learning is a promising direction to auto-extract features without human intervention.
This paper proposes a general unsupervised approach, named textbfConClu, to perform the learning of point-wise and global features.
- Score: 11.64827192421785
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning from unlabeled or partially labeled data to alleviate human labeling
remains a challenging research topic in 3D modeling. Along this line,
unsupervised representation learning is a promising direction to auto-extract
features without human intervention. This paper proposes a general unsupervised
approach, named \textbf{ConClu}, to perform the learning of point-wise and
global features by jointly leveraging point-level clustering and instance-level
contrasting. Specifically, for one thing, we design an Expectation-Maximization
(EM) like soft clustering algorithm that provides local supervision to extract
discriminating local features based on optimal transport. We show that this
criterion extends standard cross-entropy minimization to an optimal transport
problem, which we solve efficiently using a fast variant of the Sinkhorn-Knopp
algorithm. For another, we provide an instance-level contrasting method to
learn the global geometry, which is formulated by maximizing the similarity
between two augmentations of one point cloud. Experimental evaluations on
downstream applications such as 3D object classification and semantic
segmentation demonstrate the effectiveness of our framework and show that it
can outperform state-of-the-art techniques.
Related papers
- Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - A Data-efficient Framework for Robotics Large-scale LiDAR Scene Parsing [10.497309421830671]
Existing state-of-the-art 3D point clouds understanding methods only perform well in a fully supervised manner.
This work presents a general and simple framework to tackle point clouds understanding when labels are limited.
arXiv Detail & Related papers (2023-12-03T02:38:51Z) - Few-Shot Point Cloud Semantic Segmentation via Contrastive
Self-Supervision and Multi-Resolution Attention [6.350163959194903]
We propose a contrastive self-supervision framework for few-shot learning pretrain.
Specifically, we implement a novel contrastive learning approach with a learnable augmentor for a 3D point cloud.
We develop a multi-resolution attention module using both the nearest and farthest points to extract the local and global point information more effectively.
arXiv Detail & Related papers (2023-02-21T07:59:31Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
We propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu.
We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task.
arXiv Detail & Related papers (2022-10-06T10:18:16Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.