Many-body topology of non-Hermitian systems
- URL: http://arxiv.org/abs/2202.02548v2
- Date: Thu, 17 Mar 2022 15:22:46 GMT
- Title: Many-body topology of non-Hermitian systems
- Authors: Kohei Kawabata, Ken Shiozaki, Shinsei Ryu
- Abstract summary: We show that the intrinsic non-Hermitian topological phases in one dimension survive even in the presence of many-body interactions.
As an illustrative example, we investigate the interacting Hatano-Nelson model and find a unique topological phase and skin effect induced by many-body interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Hermiticity gives rise to unique topological phases that have no
counterparts in Hermitian systems. Such intrinsic non-Hermitian topological
phases appear even in one dimension while no topological phases appear in
one-dimensional Hermitian systems. Despite the recent considerable interest,
the intrinsic non-Hermitian topological phases have been mainly investigated in
noninteracting systems described by band theory. It has been unclear whether
they survive or reduce in the presence of many-body interactions. Here, we
demonstrate that the intrinsic non-Hermitian topological phases in one
dimension survive even in the presence of many-body interactions. We formulate
a many-body topological invariant by the winding of the complex-valued
many-body spectrum in terms of a U (1) gauge field (magnetic flux). As an
illustrative example, we investigate the interacting Hatano-Nelson model and
find a unique topological phase and skin effect induced by many-body
interactions.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-Hermitian Topology in Hermitian Topological Matter [0.0]
We show that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology.
We also find the emergence of hinge states within effective non-Hermitian Hamiltonians at surfaces of three-dimensional topological insulators.
Our work uncovers a hidden connection between Hermitian and non-Hermitian topology, and provides an approach to identifying non-Hermitian topology in quantum matter.
arXiv Detail & Related papers (2024-05-16T11:59:15Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Topological phases of many-body non-Hermitian systems [0.0]
Many-body fermionic non-Hermitian systems require two sets of topological invariants to describe the topology of energy bands and quantum states respectively.
We identify 10 symmetry classes -- determined by particle-hole, linearized time-reversal, and linearized chiral symmetries.
arXiv Detail & Related papers (2023-11-06T11:39:20Z) - Topological phase diagrams of exactly solvable non-Hermitian interacting
Kitaev chains [0.0]
We present a family of exact and numerical phase diagrams for non-Hermitian interacting Kitaev chains.
Our results reveal that some of the Hermitian phases disappear as non-Hermiticty is enhanced.
arXiv Detail & Related papers (2023-02-27T07:41:15Z) - Non-Hermitian Topological Phases: Principles and Prospects [4.3012765978447565]
We present the key principles underpinning the features of non-Hermitian phases.
We discuss exceptional points, complex energy gaps and non-Hermitian symmetry classification.
We also examine the role of disorder, present the linear response framework, and analyze the Hall transport properties of non-Hermitian systems.
arXiv Detail & Related papers (2022-12-13T10:57:49Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Band topology of pseudo-Hermitian phases through tensor Berry
connections and quantum metric [6.033106259681307]
We show that several pseudo-Hermitian phases in two and three dimensions can be built by employing $q$-deformed matrices.
We analyze their topological bulk states through non-Hermitian generalizations of Abelian and non-Abelian tensor Berry connections and quantum metric.
arXiv Detail & Related papers (2021-06-17T16:51:13Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.