論文の概要: Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin
Lesion Classification
- arxiv url: http://arxiv.org/abs/2202.02832v2
- Date: Tue, 8 Feb 2022 20:42:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 12:42:01.528332
- Title: Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin
Lesion Classification
- Title(参考訳): 悪性黒色腫の検出 : 皮膚病変分類のための皮膚トーン検出と脱バイアス
- Authors: Peter J. Bevan and Amir Atapour-Abarghouei
- Abstract要約: 修正された変分オートエンコーダを用いて、ベンチマークとして一般的に使用されるデータセットの皮膚のトーンバイアスを明らかにする。
病変画像の皮膚のトーンを自動的にラベル付けする,効率的かつ効率的なアルゴリズムを提案する。
その後、皮膚のトーンバイアスを軽減するために2つの主要なバイアスアンラーニング技術を使用します。
- 参考スコア(独自算出の注目度): 5.71097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks have demonstrated human-level performance in
the classification of melanoma and other skin lesions, but evident performance
disparities between differing skin tones should be addressed before widespread
deployment. In this work, we utilise a modified variational autoencoder to
uncover skin tone bias in datasets commonly used as benchmarks. We propose an
efficient yet effective algorithm for automatically labelling the skin tone of
lesion images, and use this to annotate the benchmark ISIC dataset. We
subsequently use two leading bias unlearning techniques to mitigate skin tone
bias. Our experimental results provide evidence that our skin tone detection
algorithm outperforms existing solutions and that unlearning skin tone improves
generalisation and can reduce the performance disparity between melanoma
detection in lighter and darker skin tones.
- Abstract(参考訳): 畳み込みニューラルネットワークはメラノーマおよび他の皮膚病変の分類においてヒトレベルの性能を示したが、異なる皮膚のトーン間の明らかなパフォーマンス格差は、広く展開する前に対処すべきである。
本研究では,ベンチマークとして一般的に使用されるデータセットの皮膚のトーンバイアスを明らかにするために,修正された変分オートエンコーダを利用する。
本稿では,病変画像の皮膚トーンを自動的にラベリングする効率的かつ効果的なアルゴリズムを提案し,ベンチマークisicデータセットにアノテートする。
その後,2つの先導バイアスアンラーニング技術を用いて皮膚トーンバイアスを軽減した。
実験の結果,皮膚トーン検出アルゴリズムが既存のソリューションを上回っており,未学習の皮膚トーンが一般化を改善し,より軽い皮膚トーンと暗い皮膚トーンにおけるメラノーマ検出性能の差を低減できることが示された。
関連論文リスト
- Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Unsupervised Skin Lesion Segmentation via Structural Entropy
Minimization on Multi-Scale Superpixel Graphs [59.19218582436495]
本研究では,構造エントロピーと孤立林外層検出に基づく非教師付き皮膚病変sEgmentationフレームワーク,すなわちSLEDを提案する。
皮膚病変は、皮膚内視鏡像から構築した超画素グラフの構造エントロピーを最小化することにより区分される。
健康な皮膚の特徴の整合性を特徴とし, マルチスケールのセグメンテーション機構を考案し, マルチスケールのスーパーピクセル特徴を活用して, セグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2023-09-05T02:15:51Z) - Revisiting Skin Tone Fairness in Dermatological Lesion Classification [3.247628857305427]
ITAに基づく4つの皮膚音分類手法をISIC18データセットで検討・比較した。
ITAに基づく皮膚のトーン推定手法のリスクを実証する先行研究の間には高い相違点がみられた。
本研究は,ISIC18データセットにおける多様性の欠如が,公正度分析のためのテストベッドとしての利用を制限することを明らかにする。
論文 参考訳(メタデータ) (2023-08-18T15:59:55Z) - FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive
Learning [11.883809920936619]
本研究では,FairDisCoを提案する。
FairDisCoを3つのフェアネス手法、すなわち、再サンプリング、再重み付け、属性認識と比較する。
DPMとEOMの2つのフェアネス指標を多クラスに適用し,皮膚病変分類における皮膚型バイアスを強調した。
論文 参考訳(メタデータ) (2022-08-22T01:54:23Z) - Meta Balanced Network for Fair Face Recognition [51.813457201437195]
我々は、データとアルゴリズムの両方の側面からバイアスを体系的に科学的に研究する。
本稿では,メタバランスネットワーク(MBN)と呼ばれるメタ学習アルゴリズムを提案する。
大規模な実験により、MBNは偏見を緩和し、顔認識において異なる肌のトーンを持つ人々に対してよりバランスの取れたパフォーマンスを学ぶことができた。
論文 参考訳(メタデータ) (2022-05-13T10:25:44Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
本研究では,野生の自撮り自撮りのために,さまざまな肌のトーンと年齢群にまたがって機能する顔顔の特徴自動検出法を提案する。
具体的には,肌の色,重度度,照明条件の異なる自撮り画像に対して,アクネ,顔料,ニキビの位置を注釈する。
論文 参考訳(メタデータ) (2022-03-30T04:52:54Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
皮膚病変は、広範囲の感染症やその他の病気の早期の指標である可能性がある。
深層学習(DL)モデルを用いた皮膚病変の診断は,プレスクリーニング患者を支援できる可能性が高い。
これらのモデルは、トレーニングデータに固有のバイアスを学習することが多く、ライトやダークスキンのトーンを持つ人の診断において、パフォーマンスのギャップを生じさせる可能性がある。
論文 参考訳(メタデータ) (2022-02-28T15:33:31Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Leveraging Adaptive Color Augmentation in Convolutional Neural Networks
for Deep Skin Lesion Segmentation [0.0]
データ表現とモデル性能を増幅する適応色拡張手法を提案する。
正常な皮膚組織に対して皮膚病変を識別するためのネットワークによって得られた意味的構造的特徴を質的に同定し,検証した。
論文 参考訳(メタデータ) (2020-10-31T00:16:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。