論文の概要: DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection
- arxiv url: http://arxiv.org/abs/2401.13280v1
- Date: Wed, 24 Jan 2024 07:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 15:20:20.662725
- Title: DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection
- Title(参考訳): DDI-CoCo: 皮膚疾患検出における色コントラストの効果を理解するデータセット
- Authors: Ming-Chang Chiu, Yingfei Wang, Yen-Ju Kuo, Pin-Yu Chen
- Abstract要約: 皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
- 参考スコア(独自算出の注目度): 51.92255321684027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin tone as a demographic bias and inconsistent human labeling poses
challenges in dermatology AI. We take another angle to investigate color
contrast's impact, beyond skin tones, on malignancy detection in skin disease
datasets: We hypothesize that in addition to skin tones, the color difference
between the lesion area and skin also plays a role in malignancy detection
performance of dermatology AI models. To study this, we first propose a robust
labeling method to quantify color contrast scores of each image and validate
our method by showing small labeling variations. More importantly, applying our
method to \textit{the only} diverse-skin tone and pathologically-confirmed skin
disease dataset DDI, yields \textbf{DDI-CoCo Dataset}, and we observe a
performance gap between the high and low color difference groups. This
disparity remains consistent across various state-of-the-art (SoTA) image
classification models, which supports our hypothesis. Furthermore, we study the
interaction between skin tone and color difference effects and suggest that
color difference can be an additional reason behind model performance bias
between skin tones. Our work provides a complementary angle to dermatology AI
for improving skin disease detection.
- Abstract(参考訳): 皮膚のトーン 人口統計学的バイアスと一貫性のない人間のラベル付けは、皮膚科aiにおける課題を提起する。
我々は、皮膚疾患データセットの悪性度検出に対する皮膚色調以外の色のコントラストの影響について、別の角度で調査する:皮膚色調に加えて、病変領域と皮膚の色差も皮膚科AIモデルの悪性度検出性能に寄与する、と仮定する。
そこで本研究では,まず,各画像の色コントラストスコアを定量化し,小さなラベリング変動を提示することにより,ロバストなラベリング手法を提案する。
さらに, 本手法を多彩な肌色調と病理診断された皮膚疾患データセットddiに適用することで, \textbf{ddi-cocoデータセットを得ることができ, 高色差群と低色差群の性能差を観察できる。
この相違は、我々の仮説を支持する様々な最先端(SoTA)画像分類モデルにおいて一貫している。
さらに,肌の色調と色差効果の相互作用について検討し,色差が皮膚色調間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Revisiting Skin Tone Fairness in Dermatological Lesion Classification [3.247628857305427]
ITAに基づく4つの皮膚音分類手法をISIC18データセットで検討・比較した。
ITAに基づく皮膚のトーン推定手法のリスクを実証する先行研究の間には高い相違点がみられた。
本研究は,ISIC18データセットにおける多様性の欠如が,公正度分析のためのテストベッドとしての利用を制限することを明らかにする。
論文 参考訳(メタデータ) (2023-08-18T15:59:55Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
そこで本研究では,パレット推定とカラーアテンションを統合した新しいGANベースのカラー化手法PalGANを提案する。
PalGANは、定量的評価と視覚比較において最先端の成果を上げ、顕著な多様性、コントラスト、およびエッジ保存の外観を提供する。
論文 参考訳(メタデータ) (2022-10-20T12:28:31Z) - FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive
Learning [11.883809920936619]
本研究では,FairDisCoを提案する。
FairDisCoを3つのフェアネス手法、すなわち、再サンプリング、再重み付け、属性認識と比較する。
DPMとEOMの2つのフェアネス指標を多クラスに適用し,皮膚病変分類における皮膚型バイアスを強調した。
論文 参考訳(メタデータ) (2022-08-22T01:54:23Z) - Automatic Facial Skin Feature Detection for Everyone [60.31670960526022]
本研究では,野生の自撮り自撮りのために,さまざまな肌のトーンと年齢群にまたがって機能する顔顔の特徴自動検出法を提案する。
具体的には,肌の色,重度度,照明条件の異なる自撮り画像に対して,アクネ,顔料,ニキビの位置を注釈する。
論文 参考訳(メタデータ) (2022-03-30T04:52:54Z) - Disparities in Dermatology AI Performance on a Diverse, Curated Clinical
Image Set [10.212881174103996]
現状のAIモデルでは、Diverse Dermatology Imagesデータセットでは、はるかにパフォーマンスが悪くなっている。
皮膚科医は、通常、AIトレーニングやデータセットのテストのために視覚的なラベルを提供するが、暗い肌のトーンや珍しい病気のイメージに悪影響を及ぼす。
論文 参考訳(メタデータ) (2022-03-15T20:33:23Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
皮膚病変は、広範囲の感染症やその他の病気の早期の指標である可能性がある。
深層学習(DL)モデルを用いた皮膚病変の診断は,プレスクリーニング患者を支援できる可能性が高い。
これらのモデルは、トレーニングデータに固有のバイアスを学習することが多く、ライトやダークスキンのトーンを持つ人の診断において、パフォーマンスのギャップを生じさせる可能性がある。
論文 参考訳(メタデータ) (2022-02-28T15:33:31Z) - Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin
Lesion Classification [5.71097144710995]
修正された変分オートエンコーダを用いて、ベンチマークとして一般的に使用されるデータセットの皮膚のトーンバイアスを明らかにする。
病変画像の皮膚のトーンを自動的にラベル付けする,効率的かつ効率的なアルゴリズムを提案する。
その後、皮膚のトーンバイアスを軽減するために2つの主要なバイアスアンラーニング技術を使用します。
論文 参考訳(メタデータ) (2022-02-06T18:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。