論文の概要: A Least Square Approach to Semi-supervised Local Cluster Extraction
- arxiv url: http://arxiv.org/abs/2202.02904v1
- Date: Mon, 7 Feb 2022 01:55:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 18:45:03.007217
- Title: A Least Square Approach to Semi-supervised Local Cluster Extraction
- Title(参考訳): 半教師付き局所クラスタ抽出における最小二乗アプローチ
- Authors: Ming-Jun Lai and Zhaiming Shen
- Abstract要約: 最小二乗半教師付き局所クラスタリングアルゴリズムは、既知の隣接行列を持つグラフからクラスタを抽出するために提案される。
このアルゴリズムは、高い確率で所望のクラスタを見つけることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A least square semi-supervised local clustering algorithm based on the idea
of compressed sensing are proposed to extract clusters from a graph with known
adjacency matrix. The algorithm is based on a two stage approaches similar to
the one in \cite{LaiMckenzie2020}. However, under a weaker assumption and with
less computational complexity than the one in \cite{LaiMckenzie2020}, the
algorithm is shown to be able to find a desired cluster with high probability.
Several numerical experiments including the synthetic data and real data such
as MNIST, AT\&T and YaleB human faces data sets are conducted to demonstrate
the performance of our algorithm.
- Abstract(参考訳): 圧縮センシングのアイデアに基づく最小二乗半教師付き局所クラスタリングアルゴリズムを提案し、既知の隣接行列を持つグラフからクラスタを抽出する。
このアルゴリズムは \cite{LaiMckenzie2020} に類似した2段階のアプローチに基づいている。
しかし、より弱い仮定の下で、計算量が少なくて計算量が少ない場合、アルゴリズムは高い確率で所望のクラスタを見つけることができることが示されている。
本アルゴリズムの性能を示すために,合成データやmnist,at\&t,yaleb human facesデータセットなどの実データを含むいくつかの数値実験を行った。
関連論文リスト
- FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
本稿では,クラスタ内の分岐を検知してサブポピュレーションを同定するアルゴリズムFLASCを提案する。
アルゴリズムの2つの変種が提示され、ノイズの堅牢性に対する計算コストが取引される。
両変種は計算コストの観点からHDBSCAN*と類似してスケールし,安定した出力を提供することを示す。
論文 参考訳(メタデータ) (2023-11-27T14:55:16Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
本稿では,BIC基準の観点から,最適なデータセットをグループ化することで,データセットをクラスタリングするアルゴリズムを提案する。
このアルゴリズムの重要な利点は、既に訓練済みのクラスタに基づいて、新しいデータの正しいスーパークラスタを予測する能力である。
論文 参考訳(メタデータ) (2023-09-05T23:49:46Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
階層クラスタリングのための微分プライベート近似アルゴリズムについて検討する。
例えば、$epsilon$-DPアルゴリズムは入力データセットに対して$O(|V|2/epsilon)$-additiveエラーを示さなければならない。
本稿では,ブロックを正確に復元する1+o(1)$近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-31T19:14:30Z) - Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model [12.868722327487752]
行列値の観測を行うために低ランク混合モデル(LrMM)を提案する。
ロイドのアルゴリズムと低ランク近似を統合して計算効率のよいクラスタリング法を設計する。
本手法は,実世界のデータセットにおける文献上の他者よりも優れる。
論文 参考訳(メタデータ) (2022-07-11T03:16:10Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
カットベースの有向グラフ(グラフ)クラスタリングは、しばしばクラスタ内あるいはクラスタ間の疎結合を見つけることに焦点を当てる。
フローベースのクラスタリングでは、クラスタ間のエッジは一方向を向く傾向にあり、マイグレーションデータ、フードウェブ、トレーディングデータに見出されている。
論文 参考訳(メタデータ) (2022-03-02T20:07:04Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
クラスタリングは教師なし学習における基本的なプリミティブである。
最近の研究は、低次手法のクラスに対する低い境界を確立している。
意外なことに、この特定のクラスタリングモデルのtextitdoesは、統計的-計算的ギャップを示さない。
論文 参考訳(メタデータ) (2021-12-07T18:50:17Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
半教師付きMSSCのための分岐結合アルゴリズムを提案する。
背景知識はペアワイズ・マスタリンクと結びつかない制約として組み込まれている。
提案したグローバル最適化アルゴリズムは,実世界のインスタンスを最大800個のデータポイントまで効率的に解決する。
論文 参考訳(メタデータ) (2021-11-30T17:08:53Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Computationally efficient sparse clustering [67.95910835079825]
我々はPCAに基づく新しいクラスタリングアルゴリズムの有限サンプル解析を行う。
ここでは,ミニマックス最適誤クラスタ化率を,体制$|theta infty$で達成することを示す。
論文 参考訳(メタデータ) (2020-05-21T17:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。