論文の概要: Multi-Objective Quality Diversity Optimization
- arxiv url: http://arxiv.org/abs/2202.03057v1
- Date: Mon, 7 Feb 2022 10:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 16:44:30.040772
- Title: Multi-Objective Quality Diversity Optimization
- Title(参考訳): 多目的品質多様性最適化
- Authors: Thomas Pierrot, Guillaume Richard, Karim Beguir, Antoine Cully
- Abstract要約: MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
- 参考スコア(独自算出の注目度): 2.4608515808275455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we consider the problem of Quality-Diversity (QD) optimization
with multiple objectives. QD algorithms have been proposed to search for a
large collection of both diverse and high-performing solutions instead of a
single set of local optima. Thriving for diversity was shown to be useful in
many industrial and robotics applications. On the other hand, most real-life
problems exhibit several potentially antagonist objectives to be optimized.
Hence being able to optimize for multiple objectives with an appropriate
technique while thriving for diversity is important to many fields. Here, we
propose an extension of the MAP-Elites algorithm in the multi-objective
setting: Multi-Objective MAP-Elites (MOME). Namely, it combines the diversity
inherited from the MAP-Elites grid algorithm with the strength of
multi-objective optimizations by filling each cell with a Pareto Front. As
such, it allows to extract diverse solutions in the descriptor space while
exploring different compromises between objectives. We evaluate our method on
several tasks, from standard optimization problems to robotics simulations. Our
experimental evaluation shows the ability of MOME to provide diverse solutions
while providing global performances similar to standard multi-objective
algorithms.
- Abstract(参考訳): 本稿では,複数の目的を持ったqd最適化の問題について考察する。
QDアルゴリズムは、一組の局所最適化ではなく、多種多様かつ高性能なソリューションの大規模なコレクションを探すために提案されている。
多様性を追求することは、多くの産業やロボットの応用において有用であることが示されている。
一方、ほとんどの実生活問題には、最適化すべき敵対的目標がいくつかある。
したがって、多様性を追求しながら適切なテクニックで複数の目的を最適化できることは多くの分野において重要である。
本稿では,多目的設定におけるmap-elitesアルゴリズムの拡張であるmulti-objective map-elites (mome)を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、Pareto Frontで各セルを埋めることによる多目的最適化の強さを組み合わせる。
これにより、ディスクリプタ空間における多様なソリューションを抽出し、目的間の異なる妥協を探求することができる。
標準最適化問題からロボットシミュレーションまで,いくつかの課題について評価を行った。
実験により,momeが多目的アルゴリズムと同様のグローバル性能を提供しながら,多様なソリューションを提供する能力を示す。
関連論文リスト
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Objectives Are All You Need: Solving Deceptive Problems Without Explicit
Diversity Maintenance [7.3153233408665495]
我々は,明らかに多様性の維持を行なわずに,偽りのドメインを解決することを約束するアプローチを提案する。
人口多様性を暗黙的に維持することが示されているため,これらの目的を最適化するためにレキシケースの選択を用いる。
目的を多くの目的に分解し、それらを最適化することで、探究する偽りの領域においてMAP-Elitesより優れていることが分かりました。
論文 参考訳(メタデータ) (2023-11-04T00:09:48Z) - Can the Problem-Solving Benefits of Quality Diversity Be Obtained
Without Explicit Diversity Maintenance? [0.0]
適切な比較は、emphmulti-objective Optimization frameworkに対して行われるべきだと我々は主張する。
本稿では, 個人に対する行動記述子の集合を自動的に決定するために, 次元還元を利用した手法を提案する。
論文 参考訳(メタデータ) (2023-05-12T21:24:04Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
論文 参考訳(メタデータ) (2021-05-10T10:39:03Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
ニッチは進化的多目的最適化において重要かつ広く用いられている手法である。
MMOPでは、対象空間の解は決定空間に複数の逆像を持つことができ、これは等価解と呼ばれる。
MMOPの処理において、標準多様性推定器をより効率的にするために、一般的なニチング機構を提案する。
論文 参考訳(メタデータ) (2021-01-31T05:23:31Z) - A Framework to Handle Multi-modal Multi-objective Optimization in
Decomposition-based Evolutionary Algorithms [7.81768535871051]
分解に基づく進化的アルゴリズムは多目的最適化に優れた性能を持つ。
解空間の多様性を維持するメカニズムが欠如しているため、マルチモーダルな多目的最適化にはあまり役に立たない可能性が高い。
本稿では,マルチモーダル多目的最適化のための分解に基づく進化的アルゴリズムの性能向上のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-30T14:32:57Z) - A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm [9.584279193016522]
広範に使われているMOEA/Dアルゴリズムに基づく効率的なマルチモーダル多目的最適化アルゴリズムを提案する。
実験の結果,提案アルゴリズムは決定空間における解の多様性を効果的に維持できることが示された。
論文 参考訳(メタデータ) (2020-04-21T09:18:54Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。