論文の概要: An Analysis of Phenotypic Diversity in Multi-Solution Optimization
- arxiv url: http://arxiv.org/abs/2105.04252v1
- Date: Mon, 10 May 2021 10:39:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-05-11 20:08:31.579173
- Title: An Analysis of Phenotypic Diversity in Multi-Solution Optimization
- Title(参考訳): 多解最適化における現象型多様性の解析
- Authors: Alexander Hagg, Mike Preuss, Alexander Asteroth, Thomas B\"ack
- Abstract要約: マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
- 参考スコア(独自算出の注目度): 118.97353274202749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: More and more, optimization methods are used to find diverse solution sets.
We compare solution diversity in multi-objective optimization, multimodal
optimization, and quality diversity in a simple domain. We show that
multiobjective optimization does not always produce much diversity, multimodal
optimization produces higher fitness solutions, and quality diversity is not
sensitive to genetic neutrality and creates the most diverse set of solutions.
An autoencoder is used to discover phenotypic features automatically, producing
an even more diverse solution set with quality diversity. Finally, we make
recommendations about when to use which approach.
- Abstract(参考訳): 様々な解集合を見つけるために最適化法が益々用いられる。
我々は,多目的最適化,マルチモーダル最適化,品質多様性におけるソリューションの多様性を,単純なドメインで比較する。
マルチオブジェクト最適化は必ずしも多様性を生んでいるわけではなく、マルチモーダル最適化はより高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
最後に、そのアプローチをいつ使うべきかを推奨します。
関連論文リスト
- Evaluating the Diversity and Quality of LLM Generated Content [72.84945252821908]
品質閾値を満たす出力間の効果的な意味的多様性を測定するための枠組みを導入する。
嗜好調整モデルでは語彙的および構文的多様性が低下するが、SFTやベースモデルよりも効果的な意味的多様性が得られる。
これらの発見は、多種多様な高品質な出力を必要とするアプリケーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2025-04-16T23:02:23Z) - Advancements in Multimodal Differential Evolution: A Comprehensive Review and Future Perspectives [0.6749750044497731]
マルチモーダル最適化は、関数の複数の大域的および局所的最適化を識別することを含み、探索空間内の多様な最適解に関する貴重な洞察を提供する。
微分進化(DE)は連続したパラメータ空間に対して強力で汎用的である。
マルチモーダル最適化のためのDECの最近の進歩は、ニッチ手法、パラメータ適応、機械学習を含む他のアルゴリズムとのハイブリダイゼーション、および様々な領域にわたる応用に焦点を当てている。
論文 参考訳(メタデータ) (2025-04-01T12:30:07Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
オフライン多目的最適化のための優先誘導拡散モデルを提案する。
我々の指導は、ある設計が他の設計を支配する確率を予測するために訓練された選好モデルである。
本結果は,多種多様な高品質な解を生成する上での分類器誘導拡散モデルの有効性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-21T16:49:38Z) - Evolutionary Multi-Objective Diversity Optimization [14.930208990741129]
我々はこの問題を、品質と多様性のトレードオフの幅を求める、双方向最適化問題として扱う。
本稿では,既存の進化的多目的探索手法と互換性のある汎用的な実装手法を提案する。
結果、非支配的な人口は豊かな質的な特徴を示し、最適化事例とそれらが引き起こす品質と多様性のトレードオフについて洞察を与える。
論文 参考訳(メタデータ) (2024-01-15T03:59:42Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation [10.609857097723266]
我々は、現実世界の問題、すなわち患者受け入れスケジューリングに対する進化的多様性の最適化に適応する。
本稿では,各解の品質を考慮に入れた一組の解において,構造的多様性を実現するための進化的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-28T14:26:45Z) - Coevolutionary Pareto Diversity Optimization [13.026567958569965]
共進化的Pareto Diversity Optimizationアプローチを導入する。
特に,集団間クロスオーバーの利用により,解の集合の多様性がさらに向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T00:52:13Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-07T10:48:28Z) - A Niching Indicator-Based Multi-modal Many-objective Optimizer [7.81768535871051]
目的の数が3以上であるマルチモーダル多目的最適化の効率的な方法は存在しない。
本稿では,ニッチインジケータに基づくマルチモーダル多目的・多目的最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-01T07:45:46Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。