論文の概要: Imposing Temporal Consistency on Deep Monocular Body Shape and Pose
Estimation
- arxiv url: http://arxiv.org/abs/2202.03074v1
- Date: Mon, 7 Feb 2022 11:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 16:38:23.860260
- Title: Imposing Temporal Consistency on Deep Monocular Body Shape and Pose
Estimation
- Title(参考訳): 深部単眼体形状の時間的一貫性とポーズ推定
- Authors: Alexandra Zimmer, Anna Hilsmann, Wieland Morgenstern, Peter Eisert
- Abstract要約: 本稿では,適合過程における時間的制約の統合に対するエレガントな解法を提案する。
我々は、顎ポーズ、表情、指ポーズを含む人物の形状と動きを表す一連の身体モデルのパラメーターを導出する。
本手法は,表情や手話を含む画像系列からリアルな3次元体モデルの導出を可能にする。
- 参考スコア(独自算出の注目度): 67.23327074124855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and temporally consistent modeling of human bodies is essential for
a wide range of applications, including character animation, understanding
human social behavior and AR/VR interfaces. Capturing human motion accurately
from a monocular image sequence is still challenging and the modeling quality
is strongly influenced by the temporal consistency of the captured body motion.
Our work presents an elegant solution for the integration of temporal
constraints in the fitting process. This does not only increase temporal
consistency but also robustness during the optimization. In detail, we derive
parameters of a sequence of body models, representing shape and motion of a
person, including jaw poses, facial expressions, and finger poses. We optimize
these parameters over the complete image sequence, fitting one consistent body
shape while imposing temporal consistency on the body motion, assuming linear
body joint trajectories over a short time. Our approach enables the derivation
of realistic 3D body models from image sequences, including facial expression
and articulated hands. In extensive experiments, we show that our approach
results in accurately estimated body shape and motion, also for challenging
movements and poses. Further, we apply it to the special application of sign
language analysis, where accurate and temporal consistent motion modelling is
essential, and show that the approach is well-suited for this kind of
application.
- Abstract(参考訳): 人間の身体の正確な時間的一貫したモデリングは、キャラクターアニメーション、人間の社会的振る舞いの理解、AR/VRインターフェースなど、幅広い応用に不可欠である。
単眼画像列から正確に人間の動きを捉えることは依然として困難であり、そのモデリング品質は、捕獲された身体の動きの時間的一貫性に強く影響される。
本研究は, 適合過程における時間制約の統合に対するエレガントな解決法を提案する。
これにより時間的一貫性が向上するだけでなく、最適化時の堅牢性も向上する。
詳しくは、顎のポーズ、表情、指のポーズなど、人の形や動きを表す一連の身体モデルのパラメータを導出する。
これらのパラメータを全体像列上で最適化し, 身体運動に時間的一貫性を付与しながら, 短時間でリニアボディジョイント軌跡を仮定した。
本手法は,表情や手話を含む画像系列からリアルな3次元体モデルの導出を可能にする。
広範にわたる実験では, 身体の形状や動きを正確に推定し, 挑戦的な動きやポーズを呈する。
さらに, 高精度かつ時間的一貫した動きモデリングが不可欠である手話解析の特殊応用に適用し, この種の応用に適していることを示す。
関連論文リスト
- Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence [47.16903508897047]
本研究では、現在のフレームのポーズ状態だけでなく、過去のポーズ状態にも人間の外観の変化が依存していることを明らかにする。
非剛性変形に対するデルタポーズシーケンス表現を利用した新しい手法であるDycoを導入する。
さらに, 慣性を考慮した3次元人間の手法は, 異なる速度での慣性による外観変化を前例なくシミュレートすることができる。
論文 参考訳(メタデータ) (2024-03-28T06:05:14Z) - Enhanced Spatio-Temporal Context for Temporally Consistent Robust 3D
Human Motion Recovery from Monocular Videos [5.258814754543826]
本稿では,モノクロ映像からの時間的一貫した動き推定手法を提案する。
汎用的なResNetのような機能を使う代わりに、本手法ではボディ認識機能表現と独立したフレーム単位のポーズを使用する。
提案手法は, 高速化誤差を著しく低減し, 既存の最先端手法よりも優れる。
論文 参考訳(メタデータ) (2023-11-20T10:53:59Z) - PoseVocab: Learning Joint-structured Pose Embeddings for Human Avatar
Modeling [30.93155530590843]
提案するPoseVocabは,高忠実度人間の細部をエンコードできる新しいポーズ符号化手法である。
キャラクターのマルチビューRGBビデオが与えられた後、PoseVocabはトレーニングポーズに基づいてキーポーズと潜在埋め込みを構築する。
実験により,本手法は他の最先端のベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-04-25T17:25:36Z) - Drivable Volumetric Avatars using Texel-Aligned Features [52.89305658071045]
光テレプレゼンスは、動的に合成された外観を実現するために、高忠実度ボディモデリングと忠実な運転の両方を必要とする。
本稿では,現実人のフルボディアバターをモデリングし,駆動する際の2つの課題に対処するエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T09:28:16Z) - Learning Motion-Dependent Appearance for High-Fidelity Rendering of
Dynamic Humans from a Single Camera [49.357174195542854]
外観のダイナミクスを学ぶ上で重要な課題は、違法に大量の観測を必要とすることである。
本手法は,1つの視点映像から,身体のポーズや新しいビューを時間的に協調的に生成できることを示す。
論文 参考訳(メタデータ) (2022-03-24T00:22:03Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoRは、時間的ポーズと形状のロバスト推定のための3Dヒューマンモーションモデルです。
モーションシーケンスの各ステップにおけるポーズの変化の分布を学習する条件付き変分オートエンコーダについて紹介する。
本モデルが大規模モーションキャプチャーデータセットのトレーニング後に多様な動きや体型に一般化することを示す。
論文 参考訳(メタデータ) (2021-05-10T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。