論文の概要: Recent Trends in 2D Object Detection and Applications in Video Event
Recognition
- arxiv url: http://arxiv.org/abs/2202.03206v1
- Date: Mon, 7 Feb 2022 14:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 16:36:36.644213
- Title: Recent Trends in 2D Object Detection and Applications in Video Event
Recognition
- Title(参考訳): 2次元物体検出の最近の動向と映像イベント認識への応用
- Authors: Prithwish Jana and Partha Pratim Mohanta
- Abstract要約: 物体検出における先駆的な研究について論じるとともに,近年のディープラーニングを活用したブレークスルーも取り上げている。
本稿では、画像とビデオの両方で2次元物体検出のための最近のデータセットを強調し、様々な最先端物体検出技術の比較性能の概要を示す。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection serves as a significant step in improving performance of
complex downstream computer vision tasks. It has been extensively studied for
many years now and current state-of-the-art 2D object detection techniques
proffer superlative results even in complex images. In this chapter, we discuss
the geometry-based pioneering works in object detection, followed by the recent
breakthroughs that employ deep learning. Some of these use a monolithic
architecture that takes a RGB image as input and passes it to a feed-forward
ConvNet or vision Transformer. These methods, thereby predict class-probability
and bounding-box coordinates, all in a single unified pipeline. Two-stage
architectures on the other hand, first generate region proposals and then feed
it to a CNN to extract features and predict object category and bounding-box.
We also elaborate upon the applications of object detection in video event
recognition, to achieve better fine-grained video classification performance.
Further, we highlight recent datasets for 2D object detection both in images
and videos, and present a comparative performance summary of various
state-of-the-art object detection techniques.
- Abstract(参考訳): オブジェクト検出は、複雑な下流コンピュータビジョンタスクのパフォーマンスを改善するための重要なステップとなる。
長年にわたって広く研究され、現在最先端の2Dオブジェクト検出技術は、複雑な画像においても最良である。
本稿では,物体検出における幾何学に基づく先駆的研究と,ディープラーニングを用いた最近のブレークスルーについて論じる。
これらのいくつかは、RGBイメージを入力として、フィードフォワードのConvNetまたは Vision Transformerに渡すモノリシックなアーキテクチャを使用している。
これらのメソッドは、クラス予測可能性とバウンディングボックス座標を単一の統一パイプラインで予測する。
一方、2段階アーキテクチャでは、まずリージョンの提案を生成し、CNNに送って特徴を抽出し、オブジェクトカテゴリとバウンディングボックスを予測する。
また,映像イベント認識における物体検出の応用について詳述し,よりきめ細かい映像分類性能を実現する。
さらに,画像と映像の両方における2次元物体検出のための最近のデータセットを強調し,様々な最先端物体検出手法の比較性能概要を示す。
関連論文リスト
- Neuromorphic Synergy for Video Binarization [54.195375576583864]
バイモーダルオブジェクトは視覚システムによって容易に認識できる情報を埋め込む視覚形式として機能する。
ニューロモルフィックカメラは、動きのぼかしを緩和する新しい機能を提供するが、最初にブルーを脱色し、画像をリアルタイムでバイナライズするのは簡単ではない。
本稿では,イベント空間と画像空間の両方で独立に推論を行うために,バイモーダル目標特性の事前知識を活用するイベントベースバイナリ再構築手法を提案する。
また、このバイナリ画像を高フレームレートバイナリビデオに伝搬する効率的な統合手法も開発している。
論文 参考訳(メタデータ) (2024-02-20T01:43:51Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOTは、オブジェクトの外観と運動の特徴と幾何学的情報を組み合わせて、より正確なトラッキングを提供する新しいフレームワークである。
実験結果から, HOTA, IDF1, MOTAの計測値において, 最先端手法と比較して顕著な性能を示した。
論文 参考訳(メタデータ) (2023-09-03T04:58:12Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
物体の識別はコンピュータビジョンにおける最も基本的で難しい問題の1つである。
近年,ディープラーニングに基づく物体検出技術が大衆の関心を集めている。
本研究では,自律型物体検出システムを構築するために,独自のディープラーニング分類手法を用いる。
提案するフレームワークは検出精度0.9864であり、現在の技術よりも高い。
論文 参考訳(メタデータ) (2022-03-02T04:39:37Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
本稿では,複数の物体検出器の出力をアンサンブルすることで,画像データ上の境界ボックスの検出性能と精度を向上させる手法を提案する。
本研究では,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
論文 参考訳(メタデータ) (2021-02-09T12:38:16Z) - End-to-end Deep Object Tracking with Circular Loss Function for Rotated
Bounding Box [68.8204255655161]
Transformer Multi-Head Attentionアーキテクチャに基づく新しいエンドツーエンドのディープラーニング手法を紹介します。
また,境界ボックスの重なりと向きを考慮に入れた新しいタイプの損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:29:29Z) - Robust and efficient post-processing for video object detection [9.669942356088377]
この研究は、従来の後処理メソッドの制限を克服する、新しい後処理パイプラインを導入している。
本手法は,特に高速移動物体に関する最先端の映像検出器の結果を改善する。
そして、YOLOのような効率的な静止画像検出器に適用することで、より計算集約的な検出器に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-09-23T10:47:24Z) - Plug & Play Convolutional Regression Tracker for Video Object Detection [37.47222104272429]
ビデオオブジェクト検出ターゲットは、オブジェクトのバウンディングボックスを同時にローカライズし、所定のビデオ内のクラスを識別する。
ビデオオブジェクト検出の課題のひとつは、ビデオ全体にわたるすべてのオブジェクトを一貫して検出することだ。
ビデオオブジェクト検出タスクのためのPlug & Playスケール適応型畳み込みレグレッショントラッカーを提案する。
論文 参考訳(メタデータ) (2020-03-02T15:57:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。