論文の概要: Ensembling object detectors for image and video data analysis
- arxiv url: http://arxiv.org/abs/2102.04798v1
- Date: Tue, 9 Feb 2021 12:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:14:22.099749
- Title: Ensembling object detectors for image and video data analysis
- Title(参考訳): 画像・映像データ解析のための物体検出器の組み立て
- Authors: Kateryna Chumachenko, Jenni Raitoharju, Alexandros Iosifidis, Moncef
Gabbouj
- Abstract要約: 本稿では,複数の物体検出器の出力をアンサンブルすることで,画像データ上の境界ボックスの検出性能と精度を向上させる手法を提案する。
本研究では,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
- 参考スコア(独自算出の注目度): 98.26061123111647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a method for ensembling the outputs of multiple
object detectors for improving detection performance and precision of bounding
boxes on image data. We further extend it to video data by proposing a
two-stage tracking-based scheme for detection refinement. The proposed method
can be used as a standalone approach for improving object detection
performance, or as a part of a framework for faster bounding box annotation in
unseen datasets, assuming that the objects of interest are those present in
some common public datasets.
- Abstract(参考訳): 本稿では,画像データのバウンディングボックスの検出性能と精度を向上させるために,複数の物体検出器の出力をセンシングする手法を提案する。
さらに,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
提案手法は,オブジェクト検出性能向上のためのスタンドアロンアプローチとして,あるいは未確認データセットのボックスアノテーションを高速にバウンディングするためのフレームワークの一部として,興味のあるオブジェクトがいくつかの公開データセットに存在することを前提として使用することができる。
関連論文リスト
- Linear Object Detection in Document Images using Multiple Object
Tracking [58.720142291102135]
線形オブジェクトは文書構造に関する実質的な情報を伝達する。
多くのアプローチはベクトル表現を復元できるが、1994年に導入された1つのクローズドソース技術のみである。
複数オブジェクト追跡を用いた文書画像中の線形オブジェクトの正確なインスタンスセグメンテーションのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:22:03Z) - Uncertainty Aware Active Learning for Reconfiguration of Pre-trained
Deep Object-Detection Networks for New Target Domains [0.0]
物体検出はコンピュータビジョンタスクの最も重要かつ基本的な側面の1つである。
オブジェクト検出モデルのトレーニングデータを効率的に取得するために、多くのデータセットは、ビデオフォーマットでアノテーションのないデータを取得することを選択します。
ビデオからすべてのフレームに注釈を付けるのは、多くのフレームがモデルが学ぶのに非常によく似た情報を含んでいるため、費用がかかり非効率である。
本稿では,この問題に対処するためのオブジェクト検出モデルのための新しい能動学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-22T17:14:10Z) - Image Segmentation-based Unsupervised Multiple Objects Discovery [1.7674345486888503]
教師なしオブジェクト発見は、イメージ内のオブジェクトをローカライズすることを目的としている。
我々は,複数のオブジェクトの発見に対して,完全に教師なしのボトムアップアプローチを提案する。
我々は、教師なしクラス非依存オブジェクト検出と教師なしイメージセグメンテーションの両方に対して、最先端の結果を提供する。
論文 参考訳(メタデータ) (2022-12-20T09:48:24Z) - Recent Trends in 2D Object Detection and Applications in Video Event
Recognition [0.76146285961466]
物体検出における先駆的な研究について論じるとともに,近年のディープラーニングを活用したブレークスルーも取り上げている。
本稿では、画像とビデオの両方で2次元物体検出のための最近のデータセットを強調し、様々な最先端物体検出技術の比較性能の概要を示す。
論文 参考訳(メタデータ) (2022-02-07T14:15:11Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-07-13T12:30:49Z) - Black-box Explanation of Object Detectors via Saliency Maps [66.745167677293]
対象検出器の予測のための視覚的説明を生成するD-RISEを提案する。
本稿では, YOLOv3などの1段検出器やFaster-RCNNのような2段検出器など, 異なる対象検出器に容易にD-RISEを適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-05T02:13:35Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。