VNE Strategy based on Chaotic Hybrid Flower Pollination Algorithm
Considering Multi-criteria Decision Making
- URL: http://arxiv.org/abs/2202.03429v1
- Date: Mon, 7 Feb 2022 00:57:00 GMT
- Title: VNE Strategy based on Chaotic Hybrid Flower Pollination Algorithm
Considering Multi-criteria Decision Making
- Authors: Peiying Zhang, Fanglin Liu, Gagangeet Singh Aujla, Sahil Vashist
- Abstract summary: Design strategy of hybrid flower pollination algorithm for Virtual Network Embedding (VNE) problem is discussed.
Cross operation is used to replace the cross-pollination operation to complete the global search.
Life cycle mechanism is introduced as a complement to the traditional fitness-based selection strategy.
- Score: 12.361459296815559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of science and technology and the need for
Multi-Criteria Decision-Making (MCDM), the optimization problem to be solved
becomes extremely complex. The theoretically accurate and optimal solutions are
often difficult to obtain. Therefore, meta-heuristic algorithms based on
multi-point search have received extensive attention. Aiming at these problems,
the design strategy of hybrid flower pollination algorithm for Virtual Network
Embedding (VNE) problem is discussed. Combining the advantages of the Genetic
Algorithm (GA) and FPA, the algorithm is optimized for the characteristics of
discrete optimization problems. The cross operation is used to replace the
cross-pollination operation to complete the global search and replace the
mutation operation with self-pollination operation to enhance the ability of
local search. Moreover, a life cycle mechanism is introduced as a complement to
the traditional fitness-based selection strategy to avoid premature
convergence. A chaotic optimization strategy is introduced to replace the
random sequence-guided crossover process to strengthen the global search
capability and reduce the probability of producing invalid individuals.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - Large Language Model Aided Multi-objective Evolutionary Algorithm: a Low-cost Adaptive Approach [4.442101733807905]
This study proposes a new framework that combines a large language model (LLM) with traditional evolutionary algorithms to enhance the algorithm's search capability and generalization performance.
We leverage an auxiliary evaluation function and automated prompt construction within the adaptive mechanism to flexibly adjust the utilization of the LLM.
arXiv Detail & Related papers (2024-10-03T08:37:02Z) - Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism [0.03495246564946555]
This study modifies the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm for multi-modal optimization problems.
The enhancements focus on addressing the challenges of multiple global minima, improving the algorithm's ability to maintain diversity and explore complex fitness landscapes.
We incorporate niching strategies and dynamic adaptation mechanisms to refine the algorithm's performance in identifying and optimizing multiple global optima.
arXiv Detail & Related papers (2024-07-01T03:41:39Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
This work concerns the evolutionary approaches to distributed black-box optimization.
Each worker can individually solve an approximation of the problem with algorithms.
We propose two alternative simulation schemes which significantly improve robustness of problems.
arXiv Detail & Related papers (2022-04-09T11:18:41Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.