Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization
- URL: http://arxiv.org/abs/2411.07860v1
- Date: Tue, 12 Nov 2024 15:18:48 GMT
- Title: Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization
- Authors: Xiang Meng,
- Abstract summary: This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
- Score: 1.8130068086063336
- License:
- Abstract: This paper presents innovative approaches to optimization problems, focusing on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO). In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation. The proposed algorithms, Chaotic Evolution with Deterministic Crowding (CEDC) and Chaotic Evolution with Clustering Algorithm (CECA), utilize chaotic dynamics to enhance population diversity and improve search efficiency. For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Parameter Tuning, and introduces a radius \( R \) concept in deterministic crowding, which enables clearer and more precise separation of populations at peak points. Experimental results demonstrate that the proposed algorithms outperform traditional methods, achieving superior optimization accuracy and robustness across a variety of benchmark functions.
Related papers
- Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism [0.03495246564946555]
This study modifies the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm for multi-modal optimization problems.
The enhancements focus on addressing the challenges of multiple global minima, improving the algorithm's ability to maintain diversity and explore complex fitness landscapes.
We incorporate niching strategies and dynamic adaptation mechanisms to refine the algorithm's performance in identifying and optimizing multiple global optima.
arXiv Detail & Related papers (2024-07-01T03:41:39Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
This paper introduces a Multi-Strategy Improved Black Widow Optimization Algorithm (MSBWOA)
It is designed to enhance the performance of the standard Black Widow Algorithm (BW) in solving complex optimization problems.
It integrates four key strategies: initializing the population using Tent chaotic mapping to enhance diversity and initial exploratory capability; implementing mutation optimization on the least fit individuals to maintain dynamic population and prevent premature convergence; and adding a random perturbation strategy to enhance the algorithm's ability to escape local optima.
arXiv Detail & Related papers (2023-12-20T19:55:36Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
This paper proposes a unified paradigm, which combines the kernelized autoncoding evolutionary search and the centriod-based prediction.
The proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems.
arXiv Detail & Related papers (2023-12-02T00:24:22Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
This work concerns the evolutionary approaches to distributed black-box optimization.
Each worker can individually solve an approximation of the problem with algorithms.
We propose two alternative simulation schemes which significantly improve robustness of problems.
arXiv Detail & Related papers (2022-04-09T11:18:41Z) - VNE Strategy based on Chaotic Hybrid Flower Pollination Algorithm
Considering Multi-criteria Decision Making [12.361459296815559]
Design strategy of hybrid flower pollination algorithm for Virtual Network Embedding (VNE) problem is discussed.
Cross operation is used to replace the cross-pollination operation to complete the global search.
Life cycle mechanism is introduced as a complement to the traditional fitness-based selection strategy.
arXiv Detail & Related papers (2022-02-07T00:57:00Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.