論文の概要: Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs
- arxiv url: http://arxiv.org/abs/2202.03583v4
- Date: Fri, 29 Mar 2024 18:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 23:57:15.429953
- Title: Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs
- Title(参考訳): 胸部X線写真を用いたDense Convolutional Networkを用いた胸部疾患のマルチラベル分類
- Authors: Dipkamal Bhusal, Sanjeeb Prasad Panday,
- Abstract要約: そこで本研究では,1回の検査で複数の病態を検出できる多ラベル疾患予測モデルを提案する。
提案モデルでは,AUCスコアが0.896であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional methods of identifying pathologies in X-ray images rely heavily on skilled human interpretation and are often time-consuming. The advent of deep learning techniques has enabled the development of automated disease diagnosis systems. Still, the performance of such systems is opaque to end-users and limited to detecting a single pathology. In this paper, we propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time. We use a dense convolutional neural network (DenseNet) for disease diagnosis. Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly with an accuracy of 0.826, while the lowest AUC score was obtained for Nodule, at 0.655 with an accuracy of 0.66. To build trust in decision-making, we generated heatmaps on X-rays to visualize the regions where the model paid attention to make certain predictions. Our proposed automated disease prediction model obtained highly confident high-performance metrics in multi-label disease prediction tasks.
- Abstract(参考訳): X線画像の病理を識別する伝統的な方法は、熟練した人間の解釈に大きく依存しており、しばしば時間を要する。
ディープラーニング技術の出現により、自動疾患診断システムの開発が可能となった。
それでも、そのようなシステムの性能はエンドユーザーにとって不透明であり、単一の病理検出に限られている。
本稿では,1回の検査で複数の病理を検出できる多ラベル疾患予測モデルを提案する。
疾患診断には高密度畳み込みニューラルネットワーク(DenseNet)を用いる。
提案モデルでは,NoduleのAUCスコアは0.655,精度0.66のAUCスコアは0.826で,AUCスコアは0.896,Noduleは0.655であった。
意思決定における信頼を構築するため,X線上にヒートマップを作成し,モデルが注意を払って予測を行う領域を可視化した。
提案手法は, マルチラベル疾患予測タスクにおいて, 信頼性の高い高性能測定値を得た。
関連論文リスト
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
X線画像診断のための新しい検出モデルtextbfAttCDCNetを提案する。
提案されたモデルは、新型コロナウイルスのラジオグラフィーデータセットでそれぞれ94.94%、95.14%、94.53%の精度、精度、リコールを達成した。
論文 参考訳(メタデータ) (2024-10-20T16:08:20Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
新型コロナウイルス、結核(TB)、肺炎などの肺疾患は、依然として深刻な世界的な健康上の問題となっている。
救急医療と科学者は、早期の新型コロナウイルス(COVID-19)の診断に信頼性と正確なアプローチを作成するために、集中的に取り組んでいる。
論文 参考訳(メタデータ) (2023-10-09T18:38:49Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
本稿では,DiffChestと呼ばれる自己条件拡散モデルを提案し,胸部X線画像のデータセット上で訓練する。
DiffChest氏は、患者固有のレベルでの分類を説明し、モデルを誤解させる可能性のある要因を視覚化する。
本研究は,医用画像分類における拡散モデルに基づく事前訓練の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-09-29T10:38:08Z) - Evolving Tsukamoto Neuro Fuzzy Model for Multiclass Covid 19
Classification with Chest X Ray Images [2.609784101826762]
本稿では,Covid 19の検出のための機械学習ベースのフレームワークを提案する。
提案モデルでは,コビッド19病の同定と識別に塚本神経ファジィ推論ネットワークを用いている。
提案したモデルは精度98.51%、感度98.35%、特異度98.08%、F1スコア98.17%を達成する。
論文 参考訳(メタデータ) (2023-05-17T17:55:45Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。