論文の概要: Survey of Hallucination in Natural Language Generation
- arxiv url: http://arxiv.org/abs/2202.03629v7
- Date: Sun, 14 Jul 2024 12:40:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 05:46:45.318046
- Title: Survey of Hallucination in Natural Language Generation
- Title(参考訳): 自然言語生成における幻覚の実態調査
- Authors: Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong Chen, Wenliang Dai, Ho Shu Chan, Andrea Madotto, Pascale Fung,
- Abstract要約: 近年,シーケンス間深層学習技術の発展により,自然言語生成(NLG)は指数関数的に向上している。
深層学習に基づく生成は意図しないテキストを幻覚させる傾向があるため、システム性能は低下する。
この調査は、NLGにおける幻覚テキストの課題に取り組む研究者の協力活動を促進するのに役立つ。
- 参考スコア(独自算出の注目度): 69.9926849848132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation; and (3) hallucinations in large language models (LLMs). This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
- Abstract(参考訳): 自然言語生成(NLG)は、Transformerベースの言語モデルのようなシーケンスからシーケンスへの深層学習技術の開発により、近年指数関数的に改善されている。
この進歩により、より流動的でコヒーレントなNLGが実現され、抽象的な要約、対話生成、データ・トゥ・テキスト生成といった下流タスクの開発が改善された。
しかし、深層学習に基づく生成は意図しないテキストを幻覚させる傾向があり、システムの性能を低下させ、現実のシナリオの多くにおいてユーザの期待を満たさないことも明らかである。
この問題に対処するため、幻覚テキストの測定・緩和について多くの研究がなされてきたが、これらを総合的にレビューすることはなかった。
そこで本研究では,NLGの幻覚問題における研究の進展と課題について概説する。
調査は,(1)メトリクス,緩和方法,今後の方向性の概観,(2)抽象的要約,対話生成,生成的質問応答,データ・テキスト生成,機械翻訳,視覚言語生成,(3)大規模言語モデル(LLMs)における幻覚に関するタスク固有の研究成果の概観,の2つに分けられる。
この調査は、NLGにおける幻覚テキストの課題に取り組む研究者の協力活動を促進するのに役立つ。
関連論文リスト
- Can We Catch the Elephant? A Survey of the Evolvement of Hallucination Evaluation on Natural Language Generation [15.67906403625006]
幻覚評価システムは複雑で多様であり、明確な組織が欠如している。
本調査は,幻覚評価における現在の限界を特定し,今後の研究方向性を明らかにすることを目的としている。
論文 参考訳(メタデータ) (2024-04-18T09:52:18Z) - MALTO at SemEval-2024 Task 6: Leveraging Synthetic Data for LLM
Hallucination Detection [3.049887057143419]
自然言語生成(NLG)では、現代のLarge Language Models(LLM)がいくつかの課題に直面している。
これはしばしば「幻覚」を示すニューラルネットワークにつながる
SHROOMチャレンジは、生成されたテキストでこれらの幻覚を自動的に識別することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-01T20:31:10Z) - Ever: Mitigating Hallucination in Large Language Models through
Real-Time Verification and Rectification [18.59695929601458]
リアルタイム検証(Real-time Verification and Rectification)と呼ばれる新しいアプローチを導入する。
エバーは、リアルタイムでステップワイズな生成と幻覚の修正戦略を採用しています。
さまざまなタスクにまたがって、信頼できる、事実的に正確なテキストを生成することにおいて、大きな改善が示されています。
論文 参考訳(メタデータ) (2023-11-15T17:04:56Z) - Cognitive Mirage: A Review of Hallucinations in Large Language Models [10.86850565303067]
各種テキスト生成タスクから幻覚の新しい分類法を提案する。
理論的洞察、検出方法、改善アプローチを提供する。
幻覚が注目される中、我々は関連研究の進捗状況の更新を続行する。
論文 参考訳(メタデータ) (2023-09-13T08:33:09Z) - Visualize Before You Write: Imagination-Guided Open-Ended Text
Generation [68.96699389728964]
我々は、機械生成画像を用いて、オープンエンドテキスト生成における言語モデルをガイドするiNLGを提案する。
オープンエンドテキスト生成タスクにおけるiNLGの有効性について実験と解析を行った。
論文 参考訳(メタデータ) (2022-10-07T18:01:09Z) - Faithfulness in Natural Language Generation: A Systematic Survey of
Analysis, Evaluation and Optimization Methods [48.47413103662829]
自然言語生成(NLG)は,事前学習型言語モデルなどの深層学習技術の発展により,近年大きく進歩している。
しかし、生成したテキストが通常不信または非実情報を含むという忠実性問題は、最大の課題となっている。
論文 参考訳(メタデータ) (2022-03-10T08:28:32Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
論文 参考訳(メタデータ) (2022-02-02T16:18:41Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
テキスト生成の目標は、機械を人間の言語で表現できるようにすることである。
入力テキストを出力テキストにマッピングすることを学ぶことで、目的を達成するために、様々なニューラルエンコーダデコーダモデルが提案されている。
この問題に対処するために、研究者は入力テキスト以外の様々な種類の知識を生成モデルに組み込むことを検討してきた。
論文 参考訳(メタデータ) (2020-10-09T06:46:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。