Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data
- URL: http://arxiv.org/abs/2202.03639v1
- Date: Tue, 8 Feb 2022 04:25:29 GMT
- Title: Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data
- Authors: Theivendiram Pranavan, Terence Sim, Arulmurugan Ambikapathi, Savitha
Ramasamy
- Abstract summary: We propose a Time-series Representational Learning through Contrastive Predictive Coding (TRL-CPC) towards anomaly detection in MVTS data.
First, we jointly optimize an encoder, an auto-regressor and a non-linear transformation function to effectively learn the representations of the MVTS data sets.
- Score: 6.463941665276371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in multi-variate time series (MVTS) data is a huge
challenge as it requires simultaneous representation of long term temporal
dependencies and correlations across multiple variables. More often, this is
solved by breaking the complexity through modeling one dependency at a time. In
this paper, we propose a Time-series Representational Learning through
Contrastive Predictive Coding (TRL-CPC) towards anomaly detection in MVTS data.
First, we jointly optimize an encoder, an auto-regressor and a non-linear
transformation function to effectively learn the representations of the MVTS
data sets, for predicting future trends. It must be noted that the context
vectors are representative of the observation window in the MTVS. Next, the
latent representations for the succeeding instants obtained through non-linear
transformations of these context vectors, are contrasted with the latent
representations of the encoder for the multi-variables such that the density
for the positive pair is maximized. Thus, the TRL-CPC helps to model the
temporal dependencies and the correlations of the parameters for a healthy
signal pattern. Finally, fitting the latent representations are fit into a
Gaussian scoring function to detect anomalies. Evaluation of the proposed
TRL-CPC on three MVTS data sets against SOTA anomaly detection methods shows
the superiority of TRL-CPC.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
Anomaly detection task for time series, especially for unlabeled data, has been a challenging problem.
We address it by applying a suitable data degradation scheme to self-supervised model training.
Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context.
arXiv Detail & Related papers (2023-05-08T05:42:24Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
This paper proposes an anomaly detection method based on unsupervised Short- and Long-term Mask Representation learning (SLMR)
Experiments show that the performance of our method outperforms other state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2022-08-19T09:34:11Z) - Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
Coding for Multivariate Time-Series Anomaly Detection [3.772827533440353]
Real-world time-series data exhibit complex temporal dependencies.
RAE-M EPC learns informative normal representations based on multi-resolution ensemble and predictive coding.
Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models.
arXiv Detail & Related papers (2022-02-21T05:47:22Z) - Self-supervised Transformer for Multivariate Clinical Time-Series with
Missing Values [7.9405251142099464]
We present STraTS (Self-supervised Transformer for TimeSeries) model.
It treats time-series as a set of observation triplets instead of using the traditional dense matrix representation.
It shows better prediction performance than state-of-theart methods for mortality prediction, especially when labeled data is limited.
arXiv Detail & Related papers (2021-07-29T19:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.