論文の概要: BIQ2021: A Large-Scale Blind Image Quality Assessment Database
- arxiv url: http://arxiv.org/abs/2202.03879v1
- Date: Tue, 8 Feb 2022 14:07:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 20:20:05.899320
- Title: BIQ2021: A Large-Scale Blind Image Quality Assessment Database
- Title(参考訳): BIQ2021: 大規模ブラインド画像品質評価データベース
- Authors: Nisar Ahmed, Shahzad Asif
- Abstract要約: 本稿ではBlind Image Quality Assessment Database, BIQ2021を紹介する。
データセットは、画像品質評価に使用する意図のないもの、意図的に導入した自然な歪みで撮影したもの、オープンソースの画像共有プラットフォームから撮影したもの、の3つのセットで構成されている。
データベースは、主観的スコアリング、人体統計、および各画像の標準偏差に関する情報を含む。
- 参考スコア(独自算出の注目度): 1.3670071336891754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The assessment of the perceptual quality of digital images is becoming
increasingly important as a result of the widespread use of digital multimedia
devices. Smartphones and high-speed internet are just two examples of
technologies that have multiplied the amount of multimedia content available.
Thus, obtaining a representative dataset, which is required for objective
quality assessment training, is a significant challenge. The Blind Image
Quality Assessment Database, BIQ2021, is presented in this article. By
selecting images with naturally occurring distortions and reliable labeling,
the dataset addresses the challenge of obtaining representative images for
no-reference image quality assessment. The dataset consists of three sets of
images: those taken without the intention of using them for image quality
assessment, those taken with intentionally introduced natural distortions, and
those taken from an open-source image-sharing platform. It is attempted to
maintain a diverse collection of images from various devices, containing a
variety of different types of objects and varying degrees of foreground and
background information. To obtain reliable scores, these images are
subjectively scored in a laboratory environment using a single stimulus method.
The database contains information about subjective scoring, human subject
statistics, and the standard deviation of each image. The dataset's Mean
Opinion Scores (MOS) make it useful for assessing visual quality. Additionally,
the proposed database is used to evaluate existing blind image quality
assessment approaches, and the scores are analyzed using Pearson and Spearman's
correlation coefficients. The image database and MOS are freely available for
use and benchmarking.
- Abstract(参考訳): デジタルマルチメディアデバイスの普及に伴い,デジタル画像の知覚的品質の評価がますます重要になっている。
スマートフォンと高速インターネットは、利用可能なマルチメディアコンテンツの量を増やすテクノロジーの2つの例にすぎない。
したがって、客観的品質評価訓練に必要な代表データセットを取得することは大きな課題である。
本稿では,ブラインド画像品質評価データベースbiq2021について述べる。
自然に発生する歪みと信頼性のあるラベル付き画像を選択することにより、非参照画像品質評価のための代表画像を取得するという課題に対処する。
データセットは、画像の品質評価に使用する意図のないもの、意図的に導入した自然歪で撮影されたもの、オープンソースの画像共有プラットフォームから撮影されたものの3つのセットで構成されている。
様々な種類のオブジェクトと様々な前景と背景情報を含む様々なデバイスからの多様な画像のコレクションを維持することを目的としている。
信頼性の高いスコアを得るために、これらの画像は単一刺激法を用いて実験室環境で主観的にスコアされる。
データベースは、主観的スコアリング、人間の主題統計、および各画像の標準偏差に関する情報を含む。
データセットの平均オピニオンスコア(MOS)は、視覚的品質を評価するのに役立つ。
さらに,提案データベースを用いて既存のブラインド画像品質評価手法の評価を行い,PearsonとSpearmanの相関係数を用いて評価を行った。
イメージデータベースとMOSは、自由に使用およびベンチマークが可能である。
関連論文リスト
- Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
ポートレート画像品質評価のためのデュアルブランチネットワーク(PIQA)を提案する。
我々は2つのバックボーンネットワーク(textiti.e., Swin Transformer-B)を使用して、肖像画全体と顔画像から高品質な特徴を抽出する。
我々は、画像シーンの分類と品質評価モデルであるLIQEを利用して、品質認識とシーン固有の特徴を補助的特徴として捉えている。
論文 参考訳(メタデータ) (2024-05-14T12:43:43Z) - Helping Visually Impaired People Take Better Quality Pictures [52.03016269364854]
我々は、視覚障害者が共通の技術的歪みの発生を最小限に抑えるためのツールを開発する。
また、ユーザによる品質問題の緩和を支援する、プロトタイプのフィードバックシステムも作成しています。
論文 参考訳(メタデータ) (2023-05-14T04:37:53Z) - Blind Multimodal Quality Assessment: A Brief Survey and A Case Study of
Low-light Images [73.27643795557778]
ブラインド画像品質評価(BIQA)は、視覚信号の客観的スコアを自動的に正確に予測することを目的としている。
この分野での最近の発展は、ヒトの主観的評価パターンと矛盾しない一助的解によって支配されている。
主観的評価から客観的スコアへの低照度画像の一意なブラインドマルチモーダル品質評価(BMQA)を提案する。
論文 参考訳(メタデータ) (2023-03-18T09:04:55Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
ゼロショット方式で画像の品質知覚(ルック)と抽象知覚(フィール)の両方を評価するために,コントラスト言語-画像事前学習(CLIP)モデルを導入する。
以上の結果から,CLIPは知覚的評価によく適合する有意義な先行情報を捉えることが示唆された。
論文 参考訳(メタデータ) (2022-07-25T17:58:16Z) - Deep Superpixel-based Network for Blind Image Quality Assessment [4.079861933099766]
ブラインド画像品質評価(BIQA)モデルの目標は、人間の目で画像を評価する過程をシミュレートすることである。
マルチスケールおよびスーパーピクセルセグメンテーションに基づいて画像の画質を評価するために, DSN-IQA という深層適応型スーパーピクセルベースネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T08:26:58Z) - A survey on IQA [0.0]
本稿では,画像品質評価と映像品質評価の概念と指標について概説する。
本報告では, 画像品質評価手法について概説し, 深層学習に基づく非参照画像品質評価手法に着目した。
論文 参考訳(メタデータ) (2021-08-29T10:52:27Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - Comprehensive evaluation of no-reference image quality assessment
algorithms on authentic distortions [0.0]
非参照画像品質評価は、所定の入力画像の品質を、そのプリスタント(歪みフリー)に関する知識や情報なしで予測する。
本研究では,複数の機械学習に基づくNR-IQA法と,真の歪みを含むデータベース上での1つの評価方法について検討する。
論文 参考訳(メタデータ) (2020-10-26T21:25:46Z) - Comprehensive evaluation of no-reference image quality assessment
algorithms on KADID-10k database [0.0]
目的画像品質評価アルゴリズムの評価は, 公開されているベンチマークデータベースを用いて行った実験に基づいている。
平均PLCC, SROCC, KROCCを100回以上の無作為列車試験分割で測定した。
この結果は, 最先端の非参照画像品質評価手法の現状について, 明確な理解を得る上で有用である。
論文 参考訳(メタデータ) (2020-10-19T12:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。