論文の概要: Systematically improving existing k-means initialization algorithms at
nearly no cost, by pairwise-nearest-neighbor smoothing
- arxiv url: http://arxiv.org/abs/2202.03949v1
- Date: Tue, 8 Feb 2022 15:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 14:10:11.269607
- Title: Systematically improving existing k-means initialization algorithms at
nearly no cost, by pairwise-nearest-neighbor smoothing
- Title(参考訳): ペアワイズアレスト近傍平滑化による既存のk平均初期化アルゴリズムの体系的改善
- Authors: Carlo Baldassi
- Abstract要約: PNN-smoothingと呼ばれる$k$-meansクラスタリングアルゴリズムを初期化するメタメソッドを提案する。
与えられたデータセットを$J$のランダムなサブセットに分割し、各データセットを個別にクラスタリングし、結果のクラスタリングをペアワイズ・アネレス・ニーバーメソッドとマージする。
- 参考スコア(独自算出の注目度): 1.2570180539670577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a meta-method for initializing (seeding) the $k$-means clustering
algorithm called PNN-smoothing. It consists in splitting a given dataset into
$J$ random subsets, clustering each of them individually, and merging the
resulting clusterings with the pairwise-nearest-neighbor (PNN) method. It is a
meta-method in the sense that when clustering the individual subsets any
seeding algorithm can be used. If the computational complexity of that seeding
algorithm is linear in the size of the data $N$ and the number of clusters $k$,
PNN-smoothing is also almost linear with an appropriate choice of $J$, and in
fact only at most a few percent slower in most cases in practice. We show
empirically, using several existing seeding methods and testing on several
synthetic and real datasets, that this procedure results in systematically
better costs. It can even be applied recursively, and easily parallelized. Our
implementation is publicly available at
https://github.com/carlobaldassi/KMeansPNNSmoothing.jl
- Abstract(参考訳): PNN-smoothingと呼ばれる$k$-meansクラスタリングアルゴリズムを初期化(参照)するためのメタメソッドを提案する。
与えられたデータセットを$J$のランダムなサブセットに分割し、各データセットを個別にクラスタリングし、結果のクラスタリングをペアワイズ・アネレス・ニア(PNN)メソッドとマージする。
個々のサブセットをクラスタリングする場合、任意のシードアルゴリズムが使用できるという意味でのメタメソッドである。
シードアルゴリズムの計算複雑性が、データ$N$とクラスタ数$k$で線形であれば、PNN-smoothingもほぼ線形であり、適切な選択は$J$であり、実際、ほとんどの場合、少なくとも数パーセント遅くなっている。
実験により, 既存のシード法を複数使用し, 合成および実データ集合をテストした結果, この手法が系統的にコストを下げることを示した。
再帰的に適用することもでき、容易に並列化できる。
私たちの実装はhttps://github.com/carlobaldassi/KMeansPNNSmoothing.jlで公開されています。
関連論文リスト
- Almost-linear Time Approximation Algorithm to Euclidean $k$-median and $k$-means [4.271492285528115]
Euclidean $k$-medianと$k$-meansの問題、クラスタリングのタスクをモデル化する標準的な2つの方法に注目します。
本稿では,定数係数近似を計算するためのほぼ線形時間アルゴリズムを提案することにより,この問題にほぼ答える。
論文 参考訳(メタデータ) (2024-07-15T20:04:06Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
Jung et al. と Mahabadi et al が導入した個別フェア (p$, $k$) クラスタリング問題に対するスケーラブルなアルゴリズムを提案する。
クラスタリングは、各$xin P$に対して$delta(x)$ of $x$の範囲内で中心となる場合、個別にフェアと呼ばれる。
我々は,従来よりもアルゴリズムがはるかに高速であるだけでなく,低コストのソリューションを生み出すことを実証的に示す。
論文 参考訳(メタデータ) (2024-02-09T19:01:48Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
クラスタリングは、教師なし機械学習における基本的な問題であり、データ分析に多くの応用がある。
任意の$k$に対して、期待時間$O(mathrmnnz(X) + nlog n)$で確実に動作する単純なランダム化クラスタリングアルゴリズムを導入する。
我々は,このアルゴリズムが$k$-means目的の任意の入力データセットに対して,近似比$smashwidetildeO(k4)$を達成することを証明した。
論文 参考訳(メタデータ) (2023-10-25T16:37:45Z) - Do you know what q-means? [50.045011844765185]
クラスタリングは、大規模なデータセットを分析する上で最も重要なツールの1つである。
クラスタリングのための"$q$-means"アルゴリズムの改良版を提案する。
また、$Obig(frack2varepsilon2(sqrtkd + log(Nd))big で実行される $varepsilon に対する "dequantized" アルゴリズムも提示する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - Replicable Clustering [57.19013971737493]
我々は,統計学的な$k$-medians,統計学的な$k$-means,統計学的な$k$-centers問題のアルゴリズムをブラックボックス方式で近似ルーチンを用いて提案する。
理論的結果を検証するブラックボックスとしてsklearnの$k$-means++実装を用いた2次元合成分布の実験も行っている。
論文 参考訳(メタデータ) (2023-02-20T23:29:43Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
我々は,最大$O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$,$epsilon$はプライバシ保証であることを示す。
最悪の場合の保証は、最先端のプライベートクラスタリング手法よりも悪いが、提案するアルゴリズムは実用的である。
論文 参考訳(メタデータ) (2022-06-17T09:24:41Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
ファジィ(fuzzy, soft objective)は、よく知られた$k$-means問題の一般化である。
クエリを少なくすることで、問題の解決が容易になる。
論文 参考訳(メタデータ) (2021-06-04T02:32:26Z) - Explainable $k$-Means and $k$-Medians Clustering [25.513261099927163]
我々は、小さな決定木を使ってデータセットをクラスタに分割し、クラスタを直接的な方法で特徴付けることを検討する。
一般的なトップダウン決定木アルゴリズムが任意のコストでクラスタリングに繋がる可能性があることを示す。
我々は、$k$の葉を持つ木を用いて説明可能なクラスタを生成する効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-02-28T04:21:53Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。