論文の概要: Computing Rule-Based Explanations of Machine Learning Classifiers using
Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2202.03971v1
- Date: Tue, 8 Feb 2022 16:21:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 14:59:46.135938
- Title: Computing Rule-Based Explanations of Machine Learning Classifiers using
Knowledge Graphs
- Title(参考訳): 知識グラフを用いた機械学習分類器のルールに基づく説明
- Authors: Edmund Dervakos, Orfeas Menis-Mastromichalakis, Alexandros Chortaras,
Giorgos Stamou
- Abstract要約: 我々は、機械学習分類器の動作を説明する用語を提供する基盤となるフレームワークとして知識グラフを使用している。
特に,知識グラフの用語で表される一階述語論理規則の形で,ブラックボックスの説明を抽出し,表現するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of symbolic knowledge representation and reasoning as a way to
resolve the lack of transparency of machine learning classifiers is a research
area that lately attracts many researchers. In this work, we use knowledge
graphs as the underlying framework providing the terminology for representing
explanations for the operation of a machine learning classifier. In particular,
given a description of the application domain of the classifier in the form of
a knowledge graph, we introduce a novel method for extracting and representing
black-box explanations of its operation, in the form of first-order logic rules
expressed in the terminology of the knowledge graph.
- Abstract(参考訳): 機械学習分類器の透明性の欠如を解決する手段として、記号的知識表現と推論を用いることは、近年多くの研究者を惹きつける研究分野である。
本研究では,機械学習分類器の動作を説明する用語を提供する基盤となるフレームワークとして知識グラフを用いる。
特に、知識グラフの形で分類器の応用領域が記述された場合、知識グラフの用語で表される一階述語論理規則の形で、その操作のブラックボックス説明を抽出し表現する新しい方法を導入する。
関連論文リスト
- Streamlining models with explanations in the learning loop [0.0]
いくつかの説明可能なAIメソッドにより、機械学習ユーザーはブラックボックスモデルの分類プロセスに関する洞察を得ることができる。
この情報を利用して機能エンジニアリングフェーズを設計し、説明と機能バリューを組み合わせる。
論文 参考訳(メタデータ) (2023-02-15T16:08:32Z) - The Shape of Explanations: A Topological Account of Rule-Based
Explanations in Machine Learning [0.0]
本稿では,ルールに基づく説明手法の枠組みを導入し,説明可能性の評価を行う。
好みのスキームは、ユーザがドメインについてどれだけ知っているかと、特徴空間上の確率測度に依存すると我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T02:58:00Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
本稿では,知識グラフをレコメンデーションシステムに組み込むために,知識対応コンディショナルアテンションネットワーク(KCAN)を提案する。
本研究では,まず,ユーザ・イテムネットワークとナレッジグラフのグローバルな意味的類似性を捉えるノード表現を得る。
そして,そのサブグラフに条件付きアテンションアグリゲーションを適用することで,その知識グラフを改良し,目標固有ノード表現を得る。
論文 参考訳(メタデータ) (2021-11-03T09:40:43Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z) - Knowledge Graph semantic enhancement of input data for improving AI [0.0]
機械学習アルゴリズムを用いて設計されたインテリジェントシステムは、大量のラベル付きデータを必要とする。
背景知識は、限定ラベル付きデータを拡張して機械学習アルゴリズムを訓練する、補完的で現実的な事実情報を提供する。
知識グラフ(KG)は、多くの実践的な応用において、グラフの形でこれらの背景知識を整理するのに便利で有用である。
論文 参考訳(メタデータ) (2020-05-10T17:37:38Z) - Knowledge Graph Embeddings and Explainable AI [29.205234615756822]
我々は,知識グラフの埋め込みの概念を,それらが何であるか,どのように生成可能か,どのように評価可能かを説明することによって紹介する。
我々は、ベクトル空間における知識を表現するために導入されたアプローチを説明することによって、この分野における最先端技術について要約する。
知識表現に関して、説明可能性の問題を検討し、知識グラフの埋め込みによって得られた予測を説明するモデルと方法について議論する。
論文 参考訳(メタデータ) (2020-04-30T14:55:09Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Common-Knowledge Concept Recognition for SEVA [15.124939896007472]
我々はシステムエンジニアの仮想アシスタント(SEVA)のための共通知識概念認識システムを構築した。
この問題は、名前付きエンティティ抽出と同様のトークン分類タスクとして定式化される。
システム工学の概念を認識するためにシーケンスモデルをトレーニングするためのラベル付けスキームを慎重に定義することにより、単語レベルで注釈付けされたデータセットを構築する。
論文 参考訳(メタデータ) (2020-03-26T00:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。