論文の概要: Common-Knowledge Concept Recognition for SEVA
- arxiv url: http://arxiv.org/abs/2003.11687v1
- Date: Thu, 26 Mar 2020 00:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 20:56:34.933561
- Title: Common-Knowledge Concept Recognition for SEVA
- Title(参考訳): SEVAのための共通知識概念認識
- Authors: Jitin Krishnan, Patrick Coronado, Hemant Purohit, and Huzefa Rangwala
- Abstract要約: 我々はシステムエンジニアの仮想アシスタント(SEVA)のための共通知識概念認識システムを構築した。
この問題は、名前付きエンティティ抽出と同様のトークン分類タスクとして定式化される。
システム工学の概念を認識するためにシーケンスモデルをトレーニングするためのラベル付けスキームを慎重に定義することにより、単語レベルで注釈付けされたデータセットを構築する。
- 参考スコア(独自算出の注目度): 15.124939896007472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We build a common-knowledge concept recognition system for a Systems
Engineer's Virtual Assistant (SEVA) which can be used for downstream tasks such
as relation extraction, knowledge graph construction, and question-answering.
The problem is formulated as a token classification task similar to named
entity extraction. With the help of a domain expert and text processing
methods, we construct a dataset annotated at the word-level by carefully
defining a labelling scheme to train a sequence model to recognize systems
engineering concepts. We use a pre-trained language model and fine-tune it with
the labeled dataset of concepts. In addition, we also create some essential
datasets for information such as abbreviations and definitions from the systems
engineering domain. Finally, we construct a simple knowledge graph using these
extracted concepts along with some hyponym relations.
- Abstract(参考訳): 我々は,システムエンジニアの仮想アシスタント(SEVA)のための共通知識概念認識システムを構築し,関係抽出,知識グラフ構築,質問応答などの下流タスクに使用できる。
この問題は、名前付きエンティティ抽出と同様のトークン分類タスクとして定式化される。
ドメインエキスパートとテキスト処理手法の助けを借りて、システム工学の概念を認識するためのシーケンスモデルをトレーニングするためのラベル付けスキームを慎重に定義し、単語レベルで注釈付けされたデータセットを構築する。
事前訓練された言語モデルを使用して、ラベル付き概念データセットで微調整します。
さらに,システム工学領域から略語や定義などの情報のための重要なデータセットも作成する。
最後に,これらの概念を用いた単純な知識グラフを構築した。
関連論文リスト
- Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
本稿では,構造化情報へのタイムリーなアクセスを実現するための知識グラフに基づく新しいアプローチを提案する。
本フレームワークは,情報検索,キーフレーズ抽出,セマンティックネットワーク生成,トピックマップ可視化などを含むテキストマイニングプロセスを含む。
当社の方法論を自動車電気システムの領域に適用して,スケーラブルなアプローチを実証する。
論文 参考訳(メタデータ) (2024-09-30T07:08:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
概念に基づく説明可能なAIは、あるユーザの前提における複雑なモデルの理解を改善するツールとして期待されている。
本稿では,テキスト領域と画像領域の両方でユーザ主導のデータ収集を行うワークフローを提案する。
我々は,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットをテストする。
論文 参考訳(メタデータ) (2024-04-10T13:47:22Z) - Model-Driven Engineering Method to Support the Formalization of Machine
Learning using SysML [0.0]
本研究は,モデルベース工学を活用した機械学習タスクの協調的定義を支援する手法を提案する。
この方法は、様々なデータソースの識別と統合、データ属性間のセマンティックな関係の定義、データ処理ステップの定義をサポートする。
論文 参考訳(メタデータ) (2023-07-10T11:33:46Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
構造化知識と非構造化知識の両方を活用する統一的な視点を提供するために、統一知識インターフェイスUNTERを提案する。
どちらの形態の知識も注入され、UNTERは一連の知識駆動NLPタスクの継続的な改善を得る。
論文 参考訳(メタデータ) (2023-05-02T17:33:28Z) - DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for
Open-world Detection [118.36746273425354]
本稿では,デザインされた概念辞書から知識の豊かさを生かして,オープンワールド検出のための並列視覚概念事前学習手法を提案する。
概念をそれらの記述で豊かにすることにより、オープンドメイン学習を促進するために、さまざまな概念間の関係を明確に構築する。
提案フレームワークは、例えばLVISデータセット上で、強力なゼロショット検出性能を示し、私たちのDetCLIP-TはGLIP-Tを9.9%向上させ、レアカテゴリで13.5%改善した。
論文 参考訳(メタデータ) (2022-09-20T02:01:01Z) - Computing Rule-Based Explanations of Machine Learning Classifiers using
Knowledge Graphs [62.997667081978825]
我々は、機械学習分類器の動作を説明する用語を提供する基盤となるフレームワークとして知識グラフを使用している。
特に,知識グラフの用語で表される一階述語論理規則の形で,ブラックボックスの説明を抽出し,表現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T16:21:49Z) - Extracting Semantics from Maintenance Records [0.2578242050187029]
保守記録から名前付きエンティティ認識を抽出する3つの手法を開発した。
我々は、構文規則と意味に基づくアプローチと、事前学習された言語モデルを活用するアプローチを開発する。
実世界の航空整備記録データを用いた評価の結果,有望な結果が得られた。
論文 参考訳(メタデータ) (2021-08-11T21:23:10Z) - KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization
for Relation Extraction [111.74812895391672]
シナジスティック最適化(KnowPrompt)を用いた知識認識型Promptチューニング手法を提案する。
関係ラベルに含まれる潜在知識をインジェクトして,学習可能な仮想型語と解答語で構築する。
論文 参考訳(メタデータ) (2021-04-15T17:57:43Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。