論文の概要: CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation
- arxiv url: http://arxiv.org/abs/2202.03984v2
- Date: Wed, 9 Feb 2022 04:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 12:42:38.237000
- Title: CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation
- Title(参考訳): causpref: 分散推薦のための因果選好学習
- Authors: Yue He, Zimu Wang, Peng Cui, Hao Zou, Yafeng Zhang, Qiang Cui, Yong
Jiang
- Abstract要約: 現在のレコメンデータシステムは、現実的なシナリオにおけるユーザやアイテムの配布シフトに対して、依然として脆弱である。
本稿では,推奨特化DAG学習者を因果選好に基づく推薦フレームワークCausPrefに組み込むことを提案する。
当社のアプローチは、アウト・オブ・ディストリビューション・セッティングのタイプにおいて、ベンチマークモデルを大幅に上回っている。
- 参考スコア(独自算出の注目度): 36.22965012642248
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In spite of the tremendous development of recommender system owing to the
progressive capability of machine learning recently, the current recommender
system is still vulnerable to the distribution shift of users and items in
realistic scenarios, leading to the sharp decline of performance in testing
environments. It is even more severe in many common applications where only the
implicit feedback from sparse data is available. Hence, it is crucial to
promote the performance stability of recommendation method in different
environments. In this work, we first make a thorough analysis of implicit
recommendation problem from the viewpoint of out-of-distribution (OOD)
generalization. Then under the guidance of our theoretical analysis, we propose
to incorporate the recommendation-specific DAG learner into a novel causal
preference-based recommendation framework named CausPref, mainly consisting of
causal learning of invariant user preference and anti-preference negative
sampling to deal with implicit feedback. Extensive experimental results from
real-world datasets clearly demonstrate that our approach surpasses the
benchmark models significantly under types of out-of-distribution settings, and
show its impressive interpretability.
- Abstract(参考訳): 近年の機械学習の進歩的な能力により、リコメンダシステムが著しく発展しているにもかかわらず、現在のリコメンダシステムは、現実的なシナリオにおけるユーザやアイテムの分散シフトに対して、依然として脆弱であり、テスト環境におけるパフォーマンスの急激な低下につながっている。
スパースデータからの暗黙のフィードバックしか利用できない多くの一般的なアプリケーションでは、さらに厳しい。
したがって,様々な環境においてレコメンデーション手法の性能安定性を促進することが重要である。
本稿では,まず,out-of-distribution (ood) 一般化の観点から,暗黙的推奨問題の徹底的な解析を行う。
そこで,本理論解析の指導のもと,causprefと呼ばれる新しい因果選好に基づく推薦フレームワークに推奨特化dag学習者を導入することを提案する。
実世界のデータセットから得られた広範囲な実験結果から、我々のアプローチは、分散設定のタイプにおいて、ベンチマークモデルを大幅に上回っており、その印象的な解釈可能性を示しています。
関連論文リスト
- CSRec: Rethinking Sequential Recommendation from A Causal Perspective [25.69446083970207]
シーケンシャルなレコメンデータシステム(RecSys)の本質は、ユーザが意思決定を行う方法を理解することです。
我々は、CSRec(Causal Sequential Recommendation)と呼ばれる、シーケンシャルレコメンデーションの新しい定式化を提案する。
CSRecは、シーケンシャルなコンテキスト内で推奨項目が受け入れられる確率を予測し、現在の決定がどのようになされるかをバックトラックすることを目的としている。
論文 参考訳(メタデータ) (2024-08-23T23:19:14Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
本研究では,不確実性を考慮した逆確率スコア推定器 (UIPS) を提案する。
実世界の3つのレコメンデーションデータセットを用いた実験結果から,提案したUIPS推定器の有効サンプル効率が示された。
論文 参考訳(メタデータ) (2023-03-11T11:42:26Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Debiased Recommendation with Neural Stratification [19.841871819722016]
我々は、露光密度を増大させることにより、より正確なIPS計算のためにユーザをクラスタ化することを提案する。
提案手法の有効性を実証するために,実世界のデータセットに基づく広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-15T15:45:35Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
推薦システム研究の新たなトレンドは、共同創設者の影響を因果的観点から否定することである。
提案手法は多因性マルチアウトカム(MCMO)推論問題としてモデル化する。
MCMOモデリングは,高次元因果空間に付随する観測が不十分なため,高いばらつきをもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2022-01-06T15:00:01Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
暗黙のフィードバックから学ぶことは、推奨システムの適用において最も一般的なケースの1つである。
本稿では,暗黙のフィードバックに対する確率的・変動的推薦を提案する。
提案したDPIとDVAEを4つの最先端レコメンデーションモデルに適用し、3つのデータセットで実験を行う。
論文 参考訳(メタデータ) (2021-05-20T08:59:44Z) - Latent Unexpected Recommendations [89.2011481379093]
ユーザとアイテムの埋め込みの潜伏した空間における予測性をモデル化し、新しいレコメンデーションと歴史的購入の間の隠れた複雑な関係を捉えることを提案する。
さらに,ハイブリッドユーティリティ機能の構築と,提案モデルに基づく予期せぬ推薦を行うための新しい潜在クロージャ(LC)手法を開発した。
論文 参考訳(メタデータ) (2020-07-27T02:39:30Z) - Convolutional Gaussian Embeddings for Personalized Recommendation with
Uncertainty [17.258674767363345]
既存の埋め込みベースのレコメンデーションモデルは、低次元空間における単一の固定点に対応する埋め込みを使用する。
本稿では,不確実な嗜好に適応することが証明されたガウス埋め込みを用いた統合された深層推薦フレームワークを提案する。
本フレームワークでは,モンテカルロサンプリングと畳み込みニューラルネットワークを用いて,対象ユーザと候補項目の相関関係を計算する。
論文 参考訳(メタデータ) (2020-06-19T02:10:38Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。