Protein Sequence Design with Batch Bayesian Optimisation
- URL: http://arxiv.org/abs/2303.10429v1
- Date: Sat, 18 Mar 2023 14:53:20 GMT
- Title: Protein Sequence Design with Batch Bayesian Optimisation
- Authors: Chuanjiao Zong
- Abstract summary: Protein sequence design is a challenging problem in protein engineering, which aims to discover novel proteins with useful biological functions.
directed evolution is a widely-used approach for protein sequence design, which mimics the evolution cycle in a laboratory environment and conducts an iterative protocol.
We propose a new method based on Batch Bayesian Optimization (Batch BO), a well-established optimization method, for protein sequence design.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Protein sequence design is a challenging problem in protein engineering,
which aims to discover novel proteins with useful biological functions.
Directed evolution is a widely-used approach for protein sequence design, which
mimics the evolution cycle in a laboratory environment and conducts an
iterative protocol. However, the burden of laboratory experiments can be
reduced by using machine learning approaches to build a surrogate model of the
protein landscape and conducting in-silico population selection through
model-based fitness prediction. In this paper, we propose a new method based on
Batch Bayesian Optimization (Batch BO), a well-established optimization method,
for protein sequence design. By incorporating Batch BO into the directed
evolution process, our method is able to make more informed decisions about
which sequences to select for artificial evolution, leading to improved
performance and faster convergence. We evaluate our method on a suite of
in-silico protein sequence design tasks and demonstrate substantial improvement
over baseline algorithms.
Related papers
- Reinforcement Learning for Sequence Design Leveraging Protein Language Models [14.477268882311991]
We propose to use protein language models (PLMs) as a reward function to generate new sequences.
We perform extensive experiments on various sequence lengths to benchmark RL-based approaches.
We provide comprehensive evaluations along biological plausibility and diversity of the protein.
arXiv Detail & Related papers (2024-07-03T14:31:36Z) - Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding [7.067145619709089]
EvolMPNN is an efficient model to learn evolution-aware protein embeddings.
Our model shows up to 6.4% better than state-of-the-art methods and attains 36X inference speedup.
arXiv Detail & Related papers (2024-02-20T23:06:21Z) - Improving few-shot learning-based protein engineering with evolutionary
sampling [0.0]
We propose a few-shot learning approach to novel protein design that aims to accelerate the expensive wet lab testing cycle.
Our approach is composed of two parts: a semi-supervised transfer learning approach to generate a discrete fitness landscape for a desired protein function and a novel evolutionary Monte Carlo Chain sampling algorithm.
We demonstrate the performance of our approach by experimentally screening predicted high fitness gene activators, resulting in a dramatically improved hit rate compared to existing methods.
arXiv Detail & Related papers (2023-05-23T23:07:53Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
arXiv Detail & Related papers (2022-12-20T00:26:23Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
We propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution.
ODBO employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection.
We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding variants with properties of interest.
arXiv Detail & Related papers (2022-05-19T13:21:31Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.