論文の概要: MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis
- arxiv url: http://arxiv.org/abs/2202.04266v1
- Date: Wed, 9 Feb 2022 04:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 16:10:56.833265
- Title: MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis
- Title(参考訳): MMLN:マルチモーダル診断のためのドメイン知識の活用
- Authors: Haodi Zhang, Chenyu Xu, Peirou Liang, Ke Duan, Hao Ren, Weibin Cheng,
Kaishun Wu
- Abstract要約: 肺疾患診断のための知識駆動型およびデータ駆動型フレームワークを提案する。
本研究は, 臨床医学ガイドラインに従って診断規則を定式化し, テキストデータから規則の重みを学習する。
テキストと画像データからなるマルチモーダル融合は、肺疾患の限界確率を推定するために設計されている。
- 参考スコア(独自算出の注目度): 10.133715767542386
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent studies show that deep learning models achieve good performance on
medical imaging tasks such as diagnosis prediction. Among the models,
multimodality has been an emerging trend, integrating different forms of data
such as chest X-ray (CXR) images and electronic medical records (EMRs).
However, most existing methods incorporate them in a model-free manner, which
lacks theoretical support and ignores the intrinsic relations between different
data sources. To address this problem, we propose a knowledge-driven and
data-driven framework for lung disease diagnosis. By incorporating domain
knowledge, machine learning models can reduce the dependence on labeled data
and improve interpretability. We formulate diagnosis rules according to
authoritative clinical medicine guidelines and learn the weights of rules from
text data. Finally, a multimodal fusion consisting of text and image data is
designed to infer the marginal probability of lung disease. We conduct
experiments on a real-world dataset collected from a hospital. The results show
that the proposed method outperforms the state-of-the-art multimodal baselines
in terms of accuracy and interpretability.
- Abstract(参考訳): 近年の研究では、深層学習モデルが診断予測などの医用イメージングタスクにおいて良好な性能を発揮することが示されている。
モデルの中では、胸部X線(CXR)画像や電子カルテ(EMR)など、さまざまな形式のデータを統合するマルチモーダリティ(multimodality)が流行している。
しかし、既存のほとんどの手法は、理論的なサポートがなく、異なるデータソース間の本質的な関係を無視するモデルフリーな方法でそれらを組み込んでいる。
そこで本研究では,肺疾患診断のための知識駆動型およびデータ駆動型フレームワークを提案する。
ドメイン知識を組み込むことで、機械学習モデルはラベル付きデータへの依存を減らし、解釈性を向上させることができる。
本研究は, 臨床医学ガイドラインに従って診断規則を定式化し, テキストデータから規則の重みを学習する。
最後に、肺疾患の限界確率を推定するために、テキストと画像データからなるマルチモーダル融合を設計する。
病院から収集した実世界のデータセットについて実験を行う。
その結果,提案手法は精度と解釈可能性の観点から,最先端のマルチモーダルベースラインよりも優れていた。
関連論文リスト
- MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
近年,Med-LVLM (Med-LVLMs) の進歩により,対話型診断ツールの新たな可能性が高まっている。
Med-LVLMは、しばしば事実の幻覚に悩まされ、誤った診断につながることがある。
我々は,Med-LVLMの現実性を高めるために,多目的マルチモーダルRAGシステムMMed-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-16T23:03:27Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
CT画像に基づくリンパ節転移診断のためのマルチモーダルな不均一グラフに基づく条件付き特徴誘導拡散モデルを提案する。
本稿では, 悪性腫瘍とリンパ節像の関連性, 優先性を明らかにすることを目的として, マスク付き関係表現学習戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T17:52:00Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Medical Diagnosis with Large Scale Multimodal Transformers: Leveraging
Diverse Data for More Accurate Diagnosis [0.15776842283814416]
我々は「学習可能なシナジー」の新しい技術的アプローチを提案する。
我々のアプローチは容易に拡張可能であり、臨床ルーチンからのマルチモーダルデータ入力に自然に適応する。
臨床的に関連のある診断タスクにおいて、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2022-12-18T20:43:37Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
病気予測のためのエンドツーエンドのマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
隣接行列を既存の手法として手動で定義する代わりに、潜在グラフ構造を適応グラフ学習の新しい方法によって捉えることができる。
論文 参考訳(メタデータ) (2021-07-01T03:59:22Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。