論文の概要: Cross-Modal Information Maximization for Medical Imaging: CMIM
- arxiv url: http://arxiv.org/abs/2010.10593v3
- Date: Mon, 1 Feb 2021 21:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:11:23.797372
- Title: Cross-Modal Information Maximization for Medical Imaging: CMIM
- Title(参考訳): 医用画像のクロスモーダル情報最大化:CMIM
- Authors: Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di Jorio, Margaux
Luck, Devon Hjelm, Yoshua Bengio
- Abstract要約: 病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 62.28852442561818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In hospitals, data are siloed to specific information systems that make the
same information available under different modalities such as the different
medical imaging exams the patient undergoes (CT scans, MRI, PET, Ultrasound,
etc.) and their associated radiology reports. This offers unique opportunities
to obtain and use at train-time those multiple views of the same information
that might not always be available at test-time.
In this paper, we propose an innovative framework that makes the most of
available data by learning good representations of a multi-modal input that are
resilient to modality dropping at test-time, using recent advances in mutual
information maximization. By maximizing cross-modal information at train time,
we are able to outperform several state-of-the-art baselines in two different
settings, medical image classification, and segmentation. In particular, our
method is shown to have a strong impact on the inference-time performance of
weaker modalities.
- Abstract(参考訳): 病院では、患者が行っている異なる医用画像検査(CTスキャン、MRI、PET、超音波など)や関連する放射線検査など、異なるモードで同じ情報を利用できる特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
本稿では, 相互情報最大化の最近の進歩を用いて, モダリティ低下に弾力性のあるマルチモーダル入力の良質な表現を学習することにより, 利用可能なデータを最大限に活用する革新的な枠組みを提案する。
列車時間におけるクロスモーダル情報の最大化により、医療画像分類とセグメンテーションという2つの異なる設定で、最先端のベースラインを上回ります。
特に本手法は,弱いモダリティの推論時間性能に大きな影響を与えることが示されている。
関連論文リスト
- Heterogeneous Graph Learning for Multi-modal Medical Data Analysis [6.3082663934391014]
マルチモーダル医療データを融合するために,HetMedというグラフベースの効果的なフレームワークを提案する。
HetMedは、患者間の複雑な関係を体系的に捉え、より正確な臨床判断をもたらす。
論文 参考訳(メタデータ) (2022-11-28T09:14:36Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
我々は、AI技術を用いて、異なる臨床応用のためにマルチモーダル医療データを融合する文献の合成と分析に重点を置いている。
本報告では, 各種核融合戦略, マルチモーダル核融合を用いた疾患, 臨床成績, 利用可能なマルチモーダル医療データセットを包括的に分析する。
論文 参考訳(メタデータ) (2022-10-23T07:13:37Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
肺疾患診断のための知識駆動型およびデータ駆動型フレームワークを提案する。
本研究は, 臨床医学ガイドラインに従って診断規則を定式化し, テキストデータから規則の重みを学習する。
テキストと画像データからなるマルチモーダル融合は、肺疾患の限界確率を推定するために設計されている。
論文 参考訳(メタデータ) (2022-02-09T04:12:30Z) - CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in
Medical Imaging AI [1.359138408203412]
医用画像AIドリフトモニタリングワークフローを構築してテストし、同時代の地上真実なしにデータとモデルドリフトを追跡する。
主な貢献は,(1)VAEおよび領域特異的統計手法を含む医用画像ドリフト検出のための概念実証である。
この研究は、動的医療環境における継続的医療画像AIモデルモニタリングに関連する翻訳ギャップに対処するために重要な意味を持つ。
論文 参考訳(メタデータ) (2022-02-06T18:58:35Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - RadFusion: Benchmarking Performance and Fairness for Multimodal
Pulmonary Embolism Detection from CT and EHR [14.586822005217485]
肺塞栓症と診断されたEHRデータとCTを併用した1794例のベンチマークデータセットであるRadFusionを報告する。
以上の結果から,画像とEHRデータの統合により,集団間での正の正の比率に大きな差が生じることなく,分類性能が向上することが示唆された。
論文 参考訳(メタデータ) (2021-11-23T06:10:07Z) - Universal Model for Multi-Domain Medical Image Retrieval [88.67940265012638]
医用画像検索(MIR)は、医師が類似した患者のデータを素早く見つけるのに役立つ。
MIRはデジタル画像モダリティの多用により、ますます役に立ちつつある。
しかし、病院における様々なデジタル画像モダリティの人気もまた、MIRにいくつかの課題をもたらしている。
論文 参考訳(メタデータ) (2020-07-14T23:22:04Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。