Scenario-Assisted Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2202.04337v1
- Date: Wed, 9 Feb 2022 08:46:13 GMT
- Title: Scenario-Assisted Deep Reinforcement Learning
- Authors: Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz and
Assaf Marron
- Abstract summary: We propose a technique for enhancing the reinforcement learning training process.
It allows human engineers to directly contribute their expert knowledge, making the agent under training more likely to comply with relevant constraints.
We evaluate our technique using a case-study from the domain of internet congestion control.
- Score: 3.5036351567024275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning has proven remarkably useful in training agents
from unstructured data. However, the opacity of the produced agents makes it
difficult to ensure that they adhere to various requirements posed by human
engineers. In this work-in-progress report, we propose a technique for
enhancing the reinforcement learning training process (specifically, its reward
calculation), in a way that allows human engineers to directly contribute their
expert knowledge, making the agent under training more likely to comply with
various relevant constraints. Moreover, our proposed approach allows
formulating these constraints using advanced model engineering techniques, such
as scenario-based modeling. This mix of black-box learning-based tools with
classical modeling approaches could produce systems that are effective and
efficient, but are also more transparent and maintainable. We evaluated our
technique using a case-study from the domain of internet congestion control,
obtaining promising results.
Related papers
- Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models [57.582219834039506]
We introduce the training methodologies implemented in the development of Skywork-MoE, a high-performance mixture-of-experts (MoE) large language model (LLM) with 146 billion parameters and 16 experts.
It is based on the pre-existing dense checkpoints of our Skywork-13B model.
arXiv Detail & Related papers (2024-06-03T03:58:41Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
In this study, we present a novel approach that integrates pre-trained LLMs with a FEM module.
The FEM module evaluates each design and provides essential feedback, guiding the LLMs to continuously learn, plan, generate, and optimize designs without the need for domain-specific training.
Our results reveal that these LLM-based agents can successfully generate truss designs that comply with natural language specifications with a success rate of up to 90%, which varies according to the applied constraints.
arXiv Detail & Related papers (2024-04-26T16:41:24Z) - Training Neural Networks with Internal State, Unconstrained
Connectivity, and Discrete Activations [66.53734987585244]
True intelligence may require the ability of a machine learning model to manage internal state.
We show that we have not yet discovered the most effective algorithms for training such models.
We present one attempt to design such a training algorithm, applied to an architecture with binary activations and only a single matrix of weights.
arXiv Detail & Related papers (2023-12-22T01:19:08Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Maximum Entropy Model-based Reinforcement Learning [0.0]
This work connects exploration techniques and model-based reinforcement learning.
We have designed a novel exploration method that takes into account features of the model-based approach.
We also demonstrate through experiments that our method significantly improves the performance of the model-based algorithm Dreamer.
arXiv Detail & Related papers (2021-12-02T13:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.