論文の概要: AIVC: Artificial Intelligence based Video Codec
- arxiv url: http://arxiv.org/abs/2202.04365v3
- Date: Tue, 28 Jun 2022 09:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 07:05:22.297196
- Title: AIVC: Artificial Intelligence based Video Codec
- Title(参考訳): AIVC:人工知能ベースのビデオコーデック
- Authors: Th\'eo Ladune, Pierrick Philippe
- Abstract要約: AIVCはエンドツーエンドのニューラルビデオシステムである。
ビデオの圧縮は、どんなコード構成でも学べる。
これは、最近のビデオコーダHEVCとパフォーマンスの競争力を提供する。
- 参考スコア(独自算出の注目度): 2.410573852722981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces AIVC, an end-to-end neural video codec. It is based on
two conditional autoencoders MNet and CNet, for motion compensation and coding.
AIVC learns to compress videos using any coding configurations through a single
end-to-end rate-distortion optimization. Furthermore, it offers performance
competitive with the recent video coder HEVC under several established test
conditions. A comprehensive ablation study is performed to evaluate the
benefits of the different modules composing AIVC. The implementation is made
available at https://orange-opensource.github.io/AIVC/.
- Abstract(参考訳): 本稿では,エンドツーエンドのニューラルビデオコーデックであるAIVCを紹介する。
動作補償と符号化のための2つの条件付きオートエンコーダMNetとCNetに基づいている。
AIVCは、単一のエンドツーエンドのレート-歪み最適化を通じて、任意のコーディング構成を使用してビデオを圧縮することを学ぶ。
さらに、いくつかの確立したテスト条件下では、最新のビデオコーダHEVCと性能を競う。
AIVCを構成する異なるモジュールの利点を評価するため、包括的アブレーション研究を行った。
実装はhttps://orange-opensource.github.io/aivc/で利用可能である。
関連論文リスト
- NN-VVC: Versatile Video Coding boosted by self-supervisedly learned
image coding for machines [19.183883119933558]
本稿では, NN-VVC という, E2E 学習画像と CVC の利点を組み合わせて, 画像符号化と映像符号化の両面において高い性能を実現するマシン用ハイブリッドを提案する。
実験の結果,提案システムは画像データとビデオデータのVVCよりも最大で-43.20%,-26.8%のBjontegaard Deltaレート低下を達成した。
論文 参考訳(メタデータ) (2024-01-19T15:33:46Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - Video compression dataset and benchmark of learning-based video-quality
metrics [55.41644538483948]
本稿では,ビデオ圧縮の評価を行うビデオ品質指標の新しいベンチマークを提案する。
これは、異なる標準でエンコードされた約2,500のストリームからなる、新しいデータセットに基づいている。
クラウドソーシングによるペアワイズ比較により,主観的スコアを収集した。
論文 参考訳(メタデータ) (2022-11-22T09:22:28Z) - CANF-VC: Conditional Augmented Normalizing Flows for Video Compression [81.41594331948843]
CANF-VCは、エンドツーエンドの学習ベースのビデオ圧縮システムである。
条件付き拡張正規化フロー(ANF)に基づく。
論文 参考訳(メタデータ) (2022-07-12T04:53:24Z) - Block Modulating Video Compression: An Ultra Low Complexity Image
Compression Encoder for Resource Limited Platforms [15.646001803032421]
省電力・計算資源の少ないモバイルプラットフォーム上で, BMVCの超低コスト化が提案されている。
ディープニューラルネットワークによって実装された2種類のBMVCデコーダを提示する。
論文 参考訳(メタデータ) (2022-05-07T16:20:09Z) - Adaptation and Attention for Neural Video Coding [23.116987835862314]
本稿では,いくつかの建築ノベルティとトレーニングノベルティを紹介するエンド・ツー・エンドの学習ビデオを提案する。
1つのアーキテクチャ上の特徴として,入力ビデオの解像度に基づいて動き推定プロセスを適用するために,フレーム間モデルをトレーニングすることを提案する。
第2のアーキテクチャノベルティは、分割アテンションベースのニューラルネットワークとDenseNetsの概念を組み合わせた、新しいニューラルブロックである。
論文 参考訳(メタデータ) (2021-12-16T10:25:49Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
本稿では, PVC (Perceptual Learned Video Compression) アプローチを提案する。
PLVCは低ビットレートで映像を知覚品質に圧縮することを学ぶ。
ユーザスタディでは、最新の学習ビデオ圧縮手法と比較して、PLVCの優れた知覚性能をさらに検証している。
論文 参考訳(メタデータ) (2021-09-07T13:36:57Z) - Multitask Learning for VVC Quality Enhancement and Super-Resolution [11.446576112498596]
デコードされたVVCビデオ品質を高めるための後処理のステップとして学習ベースのソリューションを提案します。
提案手法はマルチタスク学習に依存し,複数のレベルに最適化された1つの共有ネットワークを用いて品質向上と超解像化を実現する。
論文 参考訳(メタデータ) (2021-04-16T19:05:26Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Video Coding for Machines: A Paradigm of Collaborative Compression and
Intelligent Analytics [127.65410486227007]
フレーム全体を圧縮、再構成することを目的としたビデオ符号化と、最も重要な情報のみを保存し、送信する特徴圧縮は、スケールの2つの端に立つ。
最近のビデオ圧縮の急激なトレンド、例えばディープラーニングベースのコーディングツールやエンドツーエンドの画像/ビデオコーディング、MPEG-7のコンパクトな特徴記述子標準などの取り組みは、持続的かつ迅速な開発を促進する。
本稿では,新たな領域であるVCM(Video Coding for Machines)の探索を行う。
論文 参考訳(メタデータ) (2020-01-10T17:24:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。