論文の概要: A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks
- arxiv url: http://arxiv.org/abs/2202.04632v1
- Date: Wed, 9 Feb 2022 18:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 16:32:38.359992
- Title: A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks
- Title(参考訳): 深部フィードフォワードニューラルネットワークにおける特徴抽出の局所幾何学的解釈
- Authors: Md Kamran Chowdhury Shisher, Tasmeen Zaman Ornee, and Yin Sun
- Abstract要約: 本稿では, 深部フィードフォワードニューラルネットワークが高次元データから低次元特徴をいかに抽出するかを理解するための局所幾何学的解析法を提案する。
本研究は, 局所幾何学領域において, ニューラルネットワークの一層における最適重みと前層の最適特徴が, この層のベイズ作用によって決定される行列の低ランク近似を構成することを示す。
- 参考スコア(独自算出の注目度): 13.159994710917022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a local geometric analysis to interpret how deep
feedforward neural networks extract low-dimensional features from
high-dimensional data. Our study shows that, in a local geometric region, the
optimal weight in one layer of the neural network and the optimal feature
generated by the previous layer comprise a low-rank approximation of a matrix
that is determined by the Bayes action of this layer. This result holds (i) for
analyzing both the output layer and the hidden layers of the neural network,
and (ii) for neuron activation functions that are locally strictly increasing
and continuously differentiable. We use two supervised learning problems to
illustrate our results: neural network based maximum likelihood classification
(i.e., logistic regression) and neural network based minimum mean square
estimation. Experimental validation of these theoretical results will be
conducted in our future work.
- Abstract(参考訳): 本稿では,高次元データからディープフィードフォワードニューラルネットワークがどのように低次元特徴を抽出するかを解釈するための局所幾何解析を提案する。
本研究では, 局所幾何学領域において, ニューラルネットワークの一層における最適重みと前層の最適特徴が, この層のベイズ作用によって決定される行列の低ランク近似を構成することを示す。
この結果は
(i)ニューラルネットワークの出力層と隠れ層の両方を分析すること、及び
(ii) 局所的に厳密に増加し、連続的に分化可能なニューロン活性化機能について。
2つの教師付き学習問題 — ニューラルネットワークに基づく最大度分類(ロジスティック回帰)と、ニューラルネットワークに基づく最小平均二乗推定(minimum mean square estimation)です。
これらの理論結果の実験的検証を今後の研究で実施する。
関連論文リスト
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
深部畳み込みニューラルネットワークにおける平均2乗誤差解析について考察する。
付加的なリッジ関数に対しては、畳み込みニューラルネットワークとReLUアクティベーション関数を併用した1つの完全連結層が最適極小値に到達できることが示される。
論文 参考訳(メタデータ) (2022-02-24T14:22:32Z) - With Greater Distance Comes Worse Performance: On the Perspective of
Layer Utilization and Model Generalization [3.6321778403619285]
ディープニューラルネットワークの一般化は、マシンラーニングにおける主要なオープンな問題の1つだ。
初期のレイヤは一般的に、トレーニングデータとテストデータの両方のパフォーマンスに関する表現を学びます。
より深いレイヤは、トレーニングのリスクを最小限に抑え、テストや不正なラベル付けされたデータとうまく連携できない。
論文 参考訳(メタデータ) (2022-01-28T05:26:32Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - Applicability of Random Matrix Theory in Deep Learning [0.966840768820136]
本研究では,ニューラルネットワークの損失面ヘッシアンの局所スペクトル統計について検討する。
ニューラルネットワークのモデリングにおけるランダム行列理論の適用性に新たな光を当てた。
本稿では,ニューラルネットワークの真の損失面に対する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-02-12T19:49:19Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Theoretical Analysis of the Advantage of Deepening Neural Networks [0.0]
ディープニューラルネットワークによって計算可能な関数の表現性を知ることが重要である。
この2つの基準により,深層ニューラルネットワークの表現性を向上させる上で,各層におけるユニットの増加よりも,レイヤの増加の方が効果的であることを示す。
論文 参考訳(メタデータ) (2020-09-24T04:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。