論文の概要: Topological obstructions in neural networks learning
- arxiv url: http://arxiv.org/abs/2012.15834v1
- Date: Thu, 31 Dec 2020 18:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 17:23:52.011172
- Title: Topological obstructions in neural networks learning
- Title(参考訳): ニューラルネットワーク学習におけるトポロジカル障害
- Authors: Serguei Barannikov, Grigorii Sotnikov, Ilya Trofimov, Alexander
Korotin, Evgeny Burnaev
- Abstract要約: 損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
- 参考スコア(独自算出の注目度): 67.8848058842671
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We apply methods of topological data analysis to loss functions to gain
insights on learning of deep neural networks and their generalization
properties. We study global properties of the loss function gradient flow. We
use topological data analysis of the loss function and its Morse complex to
relate local behavior along gradient trajectories with global properties of the
loss surface. We define neural network Topological Obstructions score,
TO-score, with help of robust topological invariants, barcodes of loss
function, that quantify the badness of local minima for gradient-based
optimization. We have made several experiments for computing these invariants,
for small neural networks, and for fully connected, convolutional and
ResNet-like neural networks on different datasets: MNIST, Fashion MNIST,
CIFAR10, SVHN. Our two principal observations are as follows. Firstly, the
neural network barcode and TO-score decrease with the increase of the neural
network depth and width. Secondly, there is an intriguing connection between
the length of minima segments in the barcode and the minima generalization
error.
- Abstract(参考訳): 本研究では,損失関数に対するトポロジカルデータ解析の手法を適用し,深層ニューラルネットワークの学習とその一般化特性について考察する。
損失関数勾配流のグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
我々は,ロバストな位相不変量,損失関数のバーコードを用いて,勾配に基づく最適化のための局所的ミニマの悪さを定量化するニューラルネットワークトポロジカル障害スコア,to-scoreを定義する。
我々は、これらの不変量の計算、小さなニューラルネットワーク、およびmnist、 fashion mnist、cifar10、svhnといった異なるデータセット上の完全接続、畳み込み、resnetライクなニューラルネットワークについて、いくつかの実験を行った。
主な観測は以下の2つである。
まず、ニューラルネットワークの深さと幅の増加に伴い、ニューラルネットワークバーコードとTOスコアが減少する。
第二に、バーコード内のミニマセグメントの長さとミニマ一般化誤差の間に興味深い関係がある。
関連論文リスト
- Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
より深いニューラルネットワーク(DeNN)と、柔軟な数のレイヤと、限られた隠れたレイヤを持つより広いニューラルネットワーク(WeNN)を比較します。
より多くのパラメータがWeNNを好む傾向にあるのに対し、サンプルポイントの増加と損失関数の規則性の向上は、DeNNの採用に傾いている。
論文 参考訳(メタデータ) (2024-01-31T20:10:10Z) - A topological description of loss surfaces based on Betti Numbers [8.539445673580252]
多層ニューラルネットワークの場合の損失複雑性を評価するためのトポロジカル尺度を提供する。
損失関数やモデルアーキテクチャの特定のバリエーション、例えば$ell$正規化項の追加やフィードフォワードネットワークでの接続のスキップは、特定のケースにおける損失には影響しない。
論文 参考訳(メタデータ) (2024-01-08T11:20:04Z) - Topological Expressivity of ReLU Neural Networks [0.0]
本稿では,2値分類問題の設定におけるReLUニューラルネットワークの表現性について,トポロジ的観点から検討する。
その結果、深部ReLUニューラルネットワークは、トポロジカル単純化の観点から、浅部よりも指数関数的に強力であることがわかった。
論文 参考訳(メタデータ) (2023-10-17T10:28:00Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
合成定式化による物理インフォームドニューラルネットワークは、最適化が難しい非学習損失面を生成することを示す。
また,2つの楕円問題に対する2つのアプローチを,より複雑な目標解を用いて評価する。
論文 参考訳(メタデータ) (2022-06-20T18:43:35Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
本稿では, 深部フィードフォワードニューラルネットワークが高次元データから低次元特徴をいかに抽出するかを理解するための局所幾何学的解析法を提案する。
本研究は, 局所幾何学領域において, ニューラルネットワークの一層における最適重みと前層の最適特徴が, この層のベイズ作用によって決定される行列の低ランク近似を構成することを示す。
論文 参考訳(メタデータ) (2022-02-09T18:50:00Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。