Collisions of localized shocks and quantum circuits
- URL: http://arxiv.org/abs/2202.04661v2
- Date: Fri, 2 Sep 2022 14:40:05 GMT
- Title: Collisions of localized shocks and quantum circuits
- Authors: Felix M. Haehl and Ying Zhao
- Abstract summary: We study collisions between localized shockwaves inside a black hole interior.
We show that the circuit analysis offers intuitive and surprisingly accurate predictions about gravity computations.
- Score: 3.793716747008753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study collisions between localized shockwaves inside a black hole
interior. We give a holographic boundary description of this process in terms
of the overlap of two growing perturbations in a shared quantum circuit. The
perturbations grow both exponentially as well as ballistically. Due to a
competition between different physical effects, the circuit analysis shows
dependence on the transverse locations and exhibits four regimes of
qualitatively different behaviors. On the gravity side we study properties of
the post-collision geometry, using exact calculations in simple setups and
estimations in more general circumstances. We show that the circuit analysis
offers intuitive and surprisingly accurate predictions about gravity
computations involving non-linear features of general relativity.
Related papers
- Relativistic Effects on Entangled Single-Electron Traps [0.0]
In the relativistic regime, interactions between charged particles become affected by post-Coulombian corrections.
We look into the behaviour of quantum entanglement present in the static and dynamical regimes.
arXiv Detail & Related papers (2024-06-25T18:00:01Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Parametrically driving a quantum oscillator into exceptionality [0.0]
We consider the nature of exceptional points arising in quantum systems described within an open quantum systems approach.
In particular, we discuss how the populations, correlations, squeezed quadratures and optical spectra crucially depend on being above or below the exceptional point.
Our results invite the experimental probing of quantum resonators under two-photon driving.
arXiv Detail & Related papers (2023-07-07T13:27:20Z) - Unveiling quantum complementarity tradeoffs in relativistic scenarios [0.0]
We show how the tradeoff between quantities of a complete complementarity relation is modified in an arbitrary spacetime for a particle with an internal spin.
Our results extend the finding that general relativity induces a universal decoherence effect on quantum superpositions.
arXiv Detail & Related papers (2023-06-13T21:02:47Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Influence of polarization and the environment on wave-particle duality [0.0]
Wave-particle duality ascribes mutually exclusive behaviors to quantum systems that cannot be observed simultaneously.
Here, we use quantum information-theoretic tools to derive quantifiers of two properties, which account for the combined influence of path probability and polarization.
The derived quantities can work as probes in the study of open quantum dynamics.
arXiv Detail & Related papers (2022-04-29T20:41:26Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Evolution of confined quantum scalar fields in curved spacetime. Part II [0.0]
We develop a method for computing the Bogoliubov transformation experienced by a confined quantum scalar field in a globally hyperbolic spacetime.
We prove this utility by addressing two problems in the perturbative regime: Dynamical Casimir Effect and gravitational wave resonance.
arXiv Detail & Related papers (2021-06-28T18:05:50Z) - Six-point functions and collisions in the black hole interior [71.67770216265583]
We consider two signals sent from the boundaries into the black hole interior shared between the two regions.
We compute three different out-of-time-order six-point functions to quantify various properties of the collision.
arXiv Detail & Related papers (2021-05-26T18:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.